

    
      
          
            
  
Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.





          

      

      

    

  

    
      
          
            

Index



 




          

      

      

    

  

    
      
          
            
  
ActionHero

The reusable, scalable, and quick node.js API server for stateless and stateful applications


  [image: ActionHero Logo]

NPM [https://npmjs.org/package/actionhero] |
Web Site [https://www.actionherojs.com] |
Latest Docs [https://docs.actionherojs.com] |
GitHub [https://github.com/actionhero/actionhero] |
Slack [https://slack.actionherojs.com] |
Twitter [https://twitter.com/actionherojs]


[image: NPM Version] [https://www.npmjs.com/package/actionhero]
[image: Node Version] [https://npmjs.org/package/actionhero]
[image: NPM] [https://npmjs.org/package/actionhero]
[image: Dependency Status] [https://david-dm.org/actionhero/actionhero]
[image: Greenkeeper badge] [https://greenkeeper.io/]
[image: Build Status] [https://circleci.com/gh/actionhero/actionhero]
[image: Awesome] [https://github.com/l0oky/awesome-actionhero]
[image: Chat] [http://slack.actionherojs.com]



ActionHero v18

ActionHero v18 is the async/await Node.js framework you have been waiting for!

ActionHero version 18 has many significant and breaking changes from previous versions.  Please read the Release notes [https://github.com/actionhero/actionhero/releases/tag/v18.0.0] and Upgrade Guide [https://docs.actionherojs.com/tutorial-upgrade-path.html]




Who is the ActionHero?

ActionHero is a multi-transport API Server with integrated cluster capabilities and delayed tasks. The goal of actionhero is to create an easy-to-use toolkit for making reusable & scalable APIs for HTTP, WebSockets, and more.  Clients connected to an actionhero server can consume the api [https://docs.actionherojs.com/tutorial-actions.html], consume static content [https://docs.actionherojs.com/tutorial-file-server.html], and communicate with each other [https://docs.actionherojs.com/tutorial-chat.html].  ActionHero is cluster-ready, with built in support for background tasks, 0-downtime deploys, and more.  ActionHero provides a simple Async/Await API for managing every type of connection and background task.

Currently actionhero supports the following out of the box...


	Web Clients [https://docs.actionherojs.com/tutorial-web-server.html]: HTTP, HTTPS


	Socket Clients [https://docs.actionherojs.com/tutorial-socket-server.html]: TCP (telnet), TLS


	Web Socket Clients [https://docs.actionherojs.com/tutorial-web_socket.html]: HTTP, HTTPS




... and you can also make your own servers and transports. [https://docs.actionherojs.com/ActionHero.Server.html]




Quick Start

# mkdir new_project; cd new_project
npm install actionhero
npx actionhero generate
npm start





Your new project will come with example actions, tests, and more.

Or deploy a free API server now:

[image: Deploy to Heroku] [https://heroku.com/deploy?template=https://github.com/actionhero/actionhero]




Learn More 📚


	Getting Started @ www.actionherojs.com [https://www.actionherojs.com/get-started]


	ActionHero's marketing site can be found @ https://github.com/actionhero/www.actionherojs.com/.  If you want to contribute to this site, visit the related project [https://github.com/actionhero/www.actionherojs.com]






	Read the documentation @ docs.actionherojs.com [http://docs.actionherojs.com/]


	Starting with ActionHero version 18, the documentation for each version is included in this repository (and the NPM package) in the /docs folder.  The current version of this documentation is also automatically deployed to https://docs.actionherojs.com.






	Find community-based resources [https://github.com/l0oky/awesome-actionhero]


	Interact with the Community & View the Release History [https://www.actionherojs.com/community]


	Server Client [https://github.com/actionhero/actionhero-client]







In-depth Tutorials 🎓


Core Components


	Actions [https://docs.actionherojs.com/tutorial-actions.html]


	Tasks [https://docs.actionherojs.com/tutorial-tasks.html]


	Middleware [https://docs.actionherojs.com/tutorial-middleware.html]


	Initializers [https://docs.actionherojs.com/tutorial-initializers.html]


	CLI Commands [https://docs.actionherojs.com/tutorial-cli.html]


	Configuration [https://docs.actionherojs.com/tutorial-config.html]


	Cluster [https://docs.actionherojs.com/tutorial-cluster.html]


	Chat & Realtime Communication [https://docs.actionherojs.com/tutorial-chat.html]


	File Server [https://docs.actionherojs.com/tutorial-file-server.html]


	Logging [https://docs.actionherojs.com/tutorial-logging.html]


	Plugins [https://docs.actionherojs.com/tutorial-plugins.html]


	Servers [https://docs.actionherojs.com/tutorial-servers.html]


	Localization & Translation [https://docs.actionherojs.com/tutorial-localization.html]







Server Types


	Web Server & Routes [https://docs.actionherojs.com/tutorial-web-server.html]


	Socket Server [https://docs.actionherojs.com/tutorial-socket-server.html]


	WebSocket Server [https://docs.actionherojs.com/tutorial-websocket-server.html]







Testing, Deployment, and Operations


	Running ActionHero [https://docs.actionherojs.com/tutorial-running-actionhero.html]


	Development Mode & REPL [https://docs.actionherojs.com/tutorial-development-mode.html]


	Testing & SpecHelper [https://docs.actionherojs.com/tutorial-testing.html]


	Production Notes [https://docs.actionherojs.com/tutorial-production-notes.html]


	Upgrade Path [https://docs.actionherojs.com/tutorial-upgrade-path.html]









Sample Projects


	Simple [https://github.com/actionhero/actionhero-tutorial]


	Elaborate (Angular, Sequelize) [https://github.com/actionhero/actionhero-angular-bootstrap-cors-csrf]


	Client Use: React [https://github.com/actionhero/actionhero-react-next-chat]


	Client Use: React Native [https://github.com/actionhero/actionhero-react-native]







Who?


	Many folks have helped [https://github.com/actionhero/actionhero/graphs/contributors] to make ActionHero a reality.


	If you want to contribute to actionhero, contribute to the conversation on github [https://github.com/actionhero/actionhero] and join us on slack [https://slack.actionherojs.com]










          

      

      

    

  

    
      
          
            
  
My actionhero Project

visit www.actionherojs.com for more information


To install:

(assuming you have node [http://nodejs.org/] and NPM installed)

npm install




To Run:

npm start




To Test:

npm test







          

      

      

    

  

    
      
          
            
  
Contributing

First, THANK YOU.

ActionHero would not be the success it is today without the contributions of many people [https://github.com/actionhero/actionhero/graphs/contributors].  Thank you for taking the time to help out this open source project, and create something we can all use!


Pull Requests

All changes to ActionHero should be sent in as Pull Requests [https://help.github.com/articles/about-pull-requests] to our Github Project [https://github.com/actionhero/actionhero].  Changes by any other method will be instantly rejected.  GitHub allows us to coordinate and communicate in a single place.




Testing

Be sure that your changes pass the test suite!  Run npm test to run the full test suite.
You will need redis and node.js installed.  No other external dependancies are needed.

Every contribution to the codebase should have an associated test

If you need help writing tests, please ask for help in the slack team [http://slack.actionherojs.com]




Linting

We use standard.js [https://standardjs.com] to manage our lint rules.  We run standard as part of our test suite, and your contributions must pass.  Standard is very opinionated and inflexible such that we cannot inject our own opinions.  There are no eslint/jshint files to manage in this project.




Documentation

If your contribution adds a new feature of modifies an existing behavior, to document your changes using JSdoc [http://usejsdoc.org/].  We use JSdoc to automatically document ActionHero, and build docs.actionherojs.com automatically.  There are many plugins to help you with this, like this one for Atom [https://atom.io/packages/jsdoc], or this one for VS Code [https://github.com/joelday/vscode-docthis]







          

      

      

    

  

    
      
          
            
  
Name of Issue

Description of Issue


	ActionHero Version: x.x.x


	Node.js Version: x.x.x


	Operating System: (OSX, Ubuntu 14, Windows 10, etc)







Steps to reproduce your error


	Make a new actionhero project with npx actionhero generate


	create an action with the following content...






If your "issue" does not fit into this template, it might not be an issue!  Please join our slack team [http://slack.actionherojs.com] and ask the question of the community.  We can help!





          

      

      

    

  

    
      
          
            
  [image: ]


Overview

// A simple Action

'use strict'
const {Action, api} = require('actionhero')

module.exports = class MyAction extends Action {
 constructor () {
   super()
   this.name = 'randomNumber'
   this.description = 'I am an API method which will generate a random number'
   this.outputExample = {randomNumber: 0.1234}
 }

 async run (data) {
   data.response.randomNumber = Math.random()
 }
}





The core of ActionHero is the Action framework, and actions are the basic units of work.  All connection types from all servers can use actions.  This means that you only need to write an action once, and both HTTP clients and websocket clients can consume it.

The goal of an action is to read data.params (which are the arguments a connection provides), do work, and set the data.response (and data.response.error when needed) values to build the response to the client.

You can create you own actions by placing them in a ./actions/ folder at the root of your application.  You can use the generator with actionhero generate action --name=myAction

You can also define more than one action per file if you would like, and extend classes to share common methods and components (like input parsers).

// Compound Action with Shared Inputs//
const {Action} = require('actionhero')

class ValidatedAction extends Action {
  constructor () {
    super()
    this.inputs = {
      email: {
        required: true,
        validator: this.emailValidator
      },
      password: {
        required: true,
        validator: this.passwordValidator
      }
    }
  }

  emailValidator (param) {
    if (param.indexOf('@') < 0) {
      throw new Error('that is not a valid email address')
    }
  }

  passwordValidator (param) {
    if (param.length < 4) {
      throw new Error('password should be at least 3 letters long')
    }
  }
}

// the actions
exports.UserAdd = class UserAdd extends ValidatedAction {
  constructor () {
    super()
    this.name = 'userAdd'
    this.description = 'I add a user'
  }

  run (data) {
    // your code here
  }
}

exports.UserDelete = class UserDelete extends ValidatedAction {
  constructor () {
    super()
    this.name = 'userDelete'
    this.description = 'I delete a user'
  }

  run (data) {
    // your code here
  }
}








Versions

ActionHero supports multiple versions of the same action.  This will allow you to support actions/routes of the same name with upgraded functionality.


	actions optionally have the action.version attribute, which defaults to 1.


	a reserved param, apiVersion is used to directly specify the version of an action a client may request.


	if a client doesn't specify an apiVersion, they will be directed to the highest numerical version of that action.




You can optionally create routes to handle your API versioning:

As a note, if a client accessing ActionHero via routes does not provide an apiVersion and it is explicitly defined in the route, the highest number will not be assigned automatically, and will be seen as a routing error.

exports.routes = {
  all: [
    // creates routes like \`/api/myAction/1/\` and \`/api/myAction/2/\`
    // will also default \`/api/myAction\` to the latest version
    { path: '/myAction/:apiVersion', action: 'myAction' },

    // creates routes like \`/api/1/myAction/\` and \`/api/2/myAction/\`
    // will also default \`/api/myAction\` to the latest version
    { path: '/:apiVersion/myAction', action: 'myAction' },
  ]
};





We go into more detail about routes when discussing the web server




Options

The complete set of options an action can have are:

const {Action, api} = require('actionhero')

class ValidatedAction extends Action {
  constructor () {
    super()

    // (required) the action's name (the \`exports\` key doesn't matter)
    this.name = 'randomNumber'

    // (required) the description
    this.description = 'I am an API method which will generate a random number'

    // (required) a hash of all the inputs this action will accept
    // any inputs provided to the action not in this hash will be stripped
    this.inputs = {
      multiplier: {
        required: false,
        validator: (param, connection, actionTemplate) => {
          if (param < 0) { throw new Error('must be > 0') }
        },
        formatter: (param, connection, actionTemplate) => {
          return parseInt(param)
        },
        default: (param, connection, actionTemplate) => {
          return 1
        },
      }
    },

    // any middlewares to apply before/after this action
    // global middleware will be applied automatically
    // default []
    this.middleware = []

    // an example response
    // default: {}
    this.outputExample = { randomNumber: 123 }

    // you can choose to block certain servers from using this action
    // default: []
    this.blockedConnectionTypes = ['webSocket']

    // how should this action be logged?
    // default: 'info'
    this.logLevel = 'warning'

    // (HTTP only) if the route for this action includes an extension (like .jpg), should the response MIME be adjusted to match?
    // default: true
    this.matchExtensionMimeType = true

    // should this action appear within \`api.documentation.documentation\`
    // default: true
    this.toDocument = true

    // (required) the run method of the action
    async run (data) {
      data.response.randomNumber = Math.random() * data.params.multiplier;
    }
  }
}





Note that for many of these, you can define them as a scalar in the constructor or as a method which returns the proper response.




Inputs

action.inputs = {
  // a simple input
  // defaults assume required = false
  minimalInput: {}

  // a complex input
  multiplier: {
    required: true,
    validator: (param, connection, actionTemplate) => {
      if (param < 0) { throw new Error('must be > 0') }
    },
    formatter: (param, connection, actionTemplate) => {
      return parseInt(param);
    },
    default: (param, connection, actionTemplate) => {
      return 1;
    },
  },

  // a schema input
  schemaInput: {
    required: true,
    default: {},
    schema: {
      nestedInput: {
        required: true,
        default: 1,
        validator: (param, connection, actionTemplate) => {
          if (param < 0) { throw new Error('must be > 0') }
        },
        formatter: (param, connection, actionTemplate) => {
          return parseInt(param);
        },
      },
      otherInput: {},
    }
  }
};





The properties of an input are:


	required (boolean)


	Default: false






	formatter = function(param, connection, actionTemplate)


	will return the new value of the param


	Default: The parameter is not reformatted






	default = function(param, connection, actionTemplate)


	will return the default value of the param


	you can also have a static assignment for default father than a function, ie: default: 123


	Default: Parameter has no default value






	validator = function(param, connection, actionTemplate)


	should return true, null, or undefined (return nothing) if validation passed


	should throw an error message if validation fails which will be returned to the client


	Default: Parameter is always valid






	schema (object)


	optional nested inputs definition


	accept object similar to regular input


	nested input also have properties: required, formatter, default and validator








You can define api.config.general.missingParamChecks = [null, '', undefined] to choose explicitly how you want un-set params to be handled in your actions.  For example, if you want to allow explicit null values in a JSON payload but not undefined, you can now opt-in to that behavior.  This is what action.inputs.x.required = true will check against.

  
    
    General
    

    
 
  
  

    
      
          
            
  [image: ]


General

ActionHero ships with a chat framework which may be used by all persistent connections (socket and websocket). There are methods to create and manage chat rooms and control the users in those rooms. Chat does not have to be for peer-to-peer communication, and is a metaphor used for many things, including the sharing of all realtime data between client and server, and client to client.  This can be used for games, syndication, etc.

Clients themselves interact with rooms via verbs. Verbs are short-form commands that will attempt to modify the connection's state, either joining or leaving a room. Clients can be in many rooms at once.

Relevant chat verbs are:


	roomAdd


	roomLeave


	roomView


	say




The special verb for persistent connections say makes use of api.chatRoom.broadcast to tell a message to all other users in the room, IE: say myRoom Hello World from a socket client or client.say("myRoom", 'Hello World") for a websocket.

Chat on multiple actionHero nodes relies on redis for both chat (pub/sub) and a key store defined by api.config.redis. The redis pub/sub server and the key store don't need to be the same instance of redis, but they do need to be the same for all ActionHero servers you are running in the cluster. This is how ActionHero scales the chat features.

There is no limit to the number of rooms which can be created, but keep in mind that each room stores information in redis, and there load created for each connection.




Middleware

There are 4 types of middleware you can install for the chat system: say, onSayReceive, join, and leave. You can learn more about chat middleware in the middleware section of this site.  Using middleware when messages are sent or when connections join rooms is how you build up authentication and more complex workflows.




Specific Client Communication

Every connection object also has a connection.sendMessage(message) method which you can call directly from the server.




Client Use

The details of communicating within a chat room are up to each individual server (see websocket or socket), but the same principals apply:


	Client will join a room (client.roomAdd(room)).


	Once in the room, clients can send messages (which are strings) to everyone else in the room via say, ie: {client.say('room', Hello World')}


	Once a client is in a room, they will revive messages from other members of the room as events. For example, catching say events from the websocket client looks like {client.on('say', function(message){ console.log(message); })}. You can inspect message.room if you are in more than one room.


	The payload of a message will contain the room, sender, and the message body: {{message: "Hello World", room: "SecretRoom", from: "7d419af9-accf-40ac-8d78-9281591dd59e", context: "user", sentAt: 1399437579346}}








If you want to create an authenticated room, there are 2 steps:


	First, create an action which modifies some property either on the connection object it self, or stores permissions to a database.


	Then, create a join-style middleware which checks these values.  In this middleware, you can determine if the connection should be added to the room or not.








          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

Allow actionhero developers to create new files in ./bin which can be run via the CLI. These commands will have access to a the ActionHero api and CLI arguments object within a run method.

You can create namespaces for commands by using folders. For example, a file in ./bin/redis/keys would be run via npx actionhero redis keys

const {api, CLI} = require('actionhero')

module.exports = class RedisKeys extends CLI {
  constructor () {
    super()
    this.name = 'redis keys'
    this.description = 'I list all the keys in redis'
    this.example = 'actionhero keys --prefix actionhero'
  }

  inputs () {
    return {
      prefix: {
        required: true,
        default: 'actionhero',
        note: 'the redis prefix for searching keys'
      }
    }
  }

  async run ({params}) {
    let keys = await api.redis.clients.client.keys(params.prefix)
    api.log('Found ' + keys.length + 'keys:')
    keys.forEach((k) => { api.log(k) })
  }
}








Syntax

ActionHero CLI commands have:


	name


	description


	example




Inputs for CLI commands have:


	required (true/false)


	default (string only)


	note




These are sourced automatically by actionhero help, and the example above would return:

* redis keys
  description: I list all the keys in redis
  example: actionhero keys --prefix actionhero
  inputs:
    [prefix] (optional)
      note: the redis prefix for searching keys
      default: actionhero









          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

AKA: Running ActionHero in a Cluster

ActionHero can be run either as a solitary server or as part of a cluster. The goal of these cluster helpers is to allow you to create a group of servers which will share state and each be able to handle requests and run tasks. You can add or remove nodes from the cluster without fear of data loss or task duplication. You can also run many instances of ActionHero on the same server using node.js cluster methods (actionhero start cluster), which you can learn more about here.

Cluster instances are named sequentially, starting with actionhero-worker-1, and can be retrieved from 'api.id'. Logs and PID's, as well as other instance-specific information follow this pattern as well.




Cache

Using a redis [http://redis.io] backend, ActionHero nodes share memory objects (using the api.cache methods) and have a common queue for tasks. This means that all peers will have access to all data stored in the cache. The task system also becomes a common queue which all peers will work on draining. There should be no changes required to deploy your application in a cluster.

Keep in mind that many clients/server can access a cached value simultaneously, so build your actions carefully not to have conflicting state. You can learn more about the cache methods here. You can also review recommendations about Production Redis configurations.




RPC

In version 9.0.0, ActionHero introduced Remote Procedure Calls, or RPC for short. You can call an RPC method to be executed on all nodes in your cluster or just a node which holds a specific connection. You can call RPC methods with the api.redis.doCluster method. If you provide the optional callback, you will get the first response back (or a timeout error). RPC calls are invoked with api.redis.doCluster(method, args, connectionId, waitForResponse).

For example, if you wanted all nodes to log a message, you would do: api.redis.doCluster('api.log', ["hello from " + api.id])

If you wanted the node which holds connection abc123 to change their authorized status (perhaps because your room authentication relies on this), you would do:

// This will ask all nodes connected to the cluster if they have connection #\`abc123\`
//   and if they do, run \`connection.set('auth', true)\` on it
await api.connections.apply('abc123', 'set', ['auth', true]);





The RPC system is used heavily by Chat.

Two options have been added to the config/redis.js config file to support this: api.config.general.channel ( Which channel to use on redis pub/sub for RPC communication ) and api.config.general.rpcTimeout ( How long to wait for an RPC call before considering it a failure )

WARNING

RPC calls are authenticated against api.config.serverToken and communication happens over redis pub/sub. BE CAREFUL, as you can call any method within the API namespace on an ActionHero server, including shutdown() and read any data on that node.




Connections

Some special RPC tools have been added so that you can interact with connections across multiple nodes. Specifically the chat sub-system needs to be able to boot and move connections into rooms, regardless of which node they are connected to.

ActionHero has exposed api.connections.apply which can be used to retrieve data about and modify a connection on any node.


api.connections.apply(connectionId, method, args)


	Learn More


	connectionId is required


	Both method and args can be ignored if you just want to retrieve information about a connection, IE: const connectionDetails = await api.connections.apply(connectionId)









PubSub

// To subscribe to messages, add a callback for your \`messageType\`, IE:
api.redis.subscriptionHandlers['myMessageType'] = function(message){
  // do stuff
}

// send a message
const payload = {
  messageType: 'myMessageType',
  serverId: api.id,
  serverToken: api.config.general.serverToken,
  message: 'hello!',
}

await api.redis.publish(payload)





ActionHero also uses redis to allow for pub/sub communication between nodes.

You can broadcast and receive messages from other peers in the cluster:


api.redis.publish(payload)


	Learn More


	payload must contain:


	messageType : the name of your payload type,


	serverId : api.id,


	serverToken : api.config.general.serverToken,














          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

There are 2 ways to manage actionHero configuration: configuration files and overrides. In both cases, ActionHero starts by reading the config in ./config/. Here is what config files for a new ActionHero project look like [https://github.com/actionhero/actionhero/blob/master/config/].

The normal way to deal with configuration changes is to use the files in /config/ and to have changed options for each environment, based on NODE_ENV. First we load in all settings from the default config block, and then we replace those with anything defined in the relevant environment section. ActionHero uses the standard node environment variable NODE_ENV to determine environment, and defaults to ‘development' when one isn't found. This pattern is very similar the Rails and Sails frameworks. A good way to visualize this is to note that, by default, the server will return metadata in response JSON, but we change that in the production NODE_ENV and disable it.

exports.default = {
  general: (api) => {
    return {
      //...
      developmentMode: true
      //...
    }
  }
}

exports.production = {
  general: (api) => {
    return {
      developmentMode: false
    }
  }
}





The other way to modify the config is to pass a "changes" hash to the server directly at boot. You can do things like: actionhero.start({configChanges: configChanges}).  This should only bse used in special cases or tests.

The priority order of configs is:


	options passed in to boot with actionhero.start({configChanges: configChanges})


	environment-specific values in /config


	default values in /config




When building config files of your own, note that an exports.default is always required, and any environment overrides are optional. What is exported is a hash which eventually resolves a synchronous function which accepts the api variable.




Config Changes

A configChanges example:

const ActionHero = require("actionhero")
const actionhero = new ActionHero.Process()

const configChanges = {
  general: {
    developmentMode: true
  }
}

// start the server!
await actionhero.start({configChanges})
api.log("Boot Successful!")








Boot Options to find the Config Directory

When launching ActionHero you can specify which config directory to use with --config '/path/to/dir' or the environment variable ACTIONHERO_CONFIG, otherwise ./config/ will be used from your working directory.

The priority of arguments is:


	Use the project's ./config folder, if it exists.


	actionhero --config=PATH1 --config=PATH2 --config=PATH3,PATH4


	ACTIONHERO_CONFIG=PATH1,PATH2 npm start




Note that if --config or ACTIONHERO_CONFIG are used, they overwrite the use of the default /config folder. If you wish to use both, you need to re-specify "config", e.g. --config=config,local-config. Also, note that specifying multiple --config options on the command line does exactly the same thing as using one parameter with comma separators, however the environment variable method only supports the comma-delimited syntax.





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

Warning: Don't use this in production!

To enable development mode simply set developmentMode: true in your config/api.js.

ActionHero's development mode is a little different than tools like nodemon [https://github.com/remy/nodemon] in that it tries hard not to restart the server process unless something drastic changes. Changes to routes, tasks, and actions can simply replace those already in memory when they are updated on disk. Other changes, like changes to api.config or initializers are more severe, and will restart the whole application.  Note that api.config.general.developmentMode is different from NODE_ENV, which by default is "development" (and is logged when ActionHero boots). NODE_ENV is used to determine which config settings to use, and has no effect on developmentMode.




Effects of Development Mode

Development mode, when enabled, will poll for changes in your actions, tasks and initializers, and reload them on the fly.

Changes to Actions and Tasks will override the existing version in memory. Changes to an initializer or config will reboot your server automatically.


	Development Mode uses fs.watchFile() and may not work on all OSs / file systems.


	New files won't be loaded in, only existing files when the app was booted will be monitored


	As deleting a file might crash your application, we will not attempt to re-load deleted files


	If you have changed the task.frequency of a periodic task, you will continue to use the old value until the task fires at least once after the change


	Changing api.config, initializers, or servers, will attempt to do a "full" reboot the server rather than just reload that component.







Watching Custom Files

api.watchFileAndAct(path_to_file, () => {
  api.log('rebooting due to config change: ' + path_to_file, 'info')
  api.commands.restart()
});





You can use ActionHero's api.watchFileAndAct() method to watch additional files your application may have.  Use this to extend developmentMode when adding new types of files, like database models.




Debugging

Modern versions of node.js have built-in inspector capabilities.

Run ActionHero with node's --inspect flag, ie: node ./node_modules/.bin/actionhero --inspect start

More info about new node inspector [https://nodejs.org/en/docs/inspector]




REPL

actionhero console

Running "console" task
2015-11-14 17:48:01 - notice: *** starting actionhero ***
2015-11-14 17:48:01 - warning: running with fakeredis
2015-11-14 17:48:01 - info: actionhero member 10.0.1.15 has joined the cluster
2015-11-14 17:48:01 - notice: pid: 38464
2015-11-14 17:48:01 - notice: server ID: 10.0.1.15
2015-11-14 17:48:01 - info: ensuring the existence of the chatRoom: defaultRoom
2015-11-14 17:48:01 - info: ensuring the existence of the chatRoom: anotherRoom
2015-11-14 17:48:01 - notice: environment: development
2015-11-14 17:48:01 - notice: *** Server Started @ 2015-11-14 17:48:01 ***
[ AH::development ] > api.id
‘10.0.1.15'

[ AH::development ] > Object.keys(api.actions.actions)
[ ‘cacheTest',
‘randomNumber',
‘showDocumentation',
‘sleepTest',
‘status' ]





ActionHero has a command-line interface called a REPL! This means you can spin up a new instance of ActionHero and manually call all the methods on the api namespace. This combined with the new RPC tools make this a powerful debugging and development tool. Running actionhero console will load up a version of ActionHero in your terminal where you have access to the api object. This version of the server will boot, initialize, and start, but will skip booting any servers.  You will be connected to any databases per your initializers.

The REPL will:


	source NODE_ENV properly to load the config


	will connect to redis and load any user-defined initializers


	will load any plugins


	will not boot any servers




If you are familiar with rails, this is very similar to rails console





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

> curl localhost:8080/simple.html -v

*   Trying ::1..
* connect to ::1 port 8080 failed: Connection refused
*   Trying 127.0.0.1...
* Connected to localhost (127.0.0.1) port 8080
> GET /simple.html HTTP/1.1
> Host: localhost:8080
> User-Agent: curl/7.43.0
> Accept: */*
>
< HTTP/1.1 200 OK
< Last-Modified: Fri Jun 12 2015 02:51:29 GMT-0700 (PDT)
< Cache-Control: max-age=60, must-revalidate, public
< Expires: Sun, 15 Nov 2015 02:07:46 GMT
< Content-Type: text/html
< Access-Control-Allow-Headers: Content-Type
< Access-Control-Allow-Methods: HEAD, GET, POST, PUT, PATCH, DELETE, OPTIONS, TRACE
< Access-Control-Allow-Origin: *
< X-Powered-By: actionhero API
< Set-Cookie: sessionID=d4453f54ff066a2ef078e5c80f18dc78a81f44ff;path=/;expires=Sun, 15 Nov 2015 03:06:46 GMT;
< Content-Length: 101
< Date: Sun, 15 Nov 2015 02:06:46 GMT
< Connection: keep-alive
<
* Connection #0 to host localhost left intact

<h1>ActionHero</h1>\nI am a flat file being served to you via the API from ./public/simple.html<br />





ActionHero comes with a file server which clients can make use of to request files from the ActionHero server. ActionHero is not meant to be a 'rendering' server, but can serve static files.

If a directory is requested rather than a file, ActionHero will look for the file in that directory defined by api.config.commonWeb.directoryFileType (which defaults to index.html). Failing to find this file, an error will be returned defined in api.config.general.flatFileIndexPageNotFoundMessage

You can use the await api.staticFile.get(connection) in your actions (where the response object contains error, fileStream, mime, and length). Note that fileStream is a stream which can be pipe'd to a client. You can use this in actions if you wish.

On unix/OSX operating systems, symlinks for both files and folders will be followed.




Web Clients


	Cache-Control and Expires or respectively ETag headers (depending on configuration) will be sent with it's caching or revalidation time defined by api.config.servers.web.flatFileCacheDuration


	Content-Types for files will attempt to be determined using the mime package [https://npmjs.org/package/mime]


	Web clients may request connection.params.file directly within an action which makes use of api.sendFile, or if they are under the api.config.servers.web.urlPathForFiles route, the file will be looked up as if the route matches the directory structure under flatFileDirectory.







Non-web Clients


	the param file should be used to request a path


	file.content's data is sent raw, and is likely to contain binary content and line breaks. Parse your responses accordingly!







Files From Actions

// send a file
async run (data) {
  data.connection.sendFile('/path/to/file.mp3')
  data.toRender = false
}

// send 404 (web connection)
async run (data) {
  data.connection.rawConnection.responseHttpCode = 404;
  data.connection.sendFile('404.html')
  data.toRender = false
}





You can send files from within actions using connection.sendFile().

Note that you can optionally modify responseCodes (for HTTP clients only). Be sure to set toRender = false in the callback, as you have already sent data to the client, and probably don't want to do so again on a file request. If you try to sendFile on a path that doesn't exist (within your public directory), the 404 header will be handled automatically for you.




File Locations

ActionHero will check all paths defined by api.config.general.paths.public for files, in the order they are specified via that option, then check any public paths of your plugins.





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

Initializers are the main way you expand your ActionHero server.  This is where you connect to databases, modify the global api object with new classes and helper methods, and set up your middleware.

Initializers run in 3 phases coinciding with the lifecycles of the application: initialize, start, and stop.  All initialize steps happen before all start steps.  Initializers can define both methods and priorities which will happen at each phase of the server's lifecycle.

System initializers (like setting up redis and the cache) have priority levels in the 100 to 1000 level range.  Application initializers should run with a priority level of over 1000 to use methods created by ActionHero, as they might not exist before then.  You can of course set priority levels lower than 1000 in your application (perhaps you connect to a database).  The priority level split is purely convention.

In general, initialize() methods should create prototypes and new objects, and start() should boot things or connect to external resources.




Format

// initializers/stuffInit.js

const {Initializer, api} = require('actionhero')

module.exports = class StuffInit extends Initializer {
  constructor () {
    super()
    this.name = 'StuffInit'
    this.loadPriority = 1000
    this.startPriority = 1000
    this.stopPriority = 1000
  }

  async initialize () {
    api.StuffInit = {}
    api.StuffInit.doAThing = async () => {}
    api.StuffInit.stopStuff = async () => {}
    api.log('I initialized', 'debug', this.name)
  }

  async start () {
    await api.StuffInit.startStuff()
    api.log('I started', 'debug', this.name)
  }

  async stop () {
    await api.StuffInit.stopStuff()
    api.log('I stopped', 'debug', this.name)
  }
}





To use a custom initializer, create a initializers directory in your project. Export a class that extends ActionHero.Initializer and implements at least one of start, stop or initialize and specify your priorities.

You can generate a file of this type with actionhero generate initializer --name=stuffInit




Errors

You can throw an error at any step in the initializer.  Doing so will cause ActionHero to log the error and stop the server.  For example, you might throw an error if you cannot connect to an external service at boot, like a database [https://github.com/actionhero/ah-sequelize-plugin/blob/master/initializers/sequelize.js].





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

ActionHero uses the i18n [https://github.com/mashpie/i18n-node] module to localize responses to clients.




Locale Files


	When running ActionHero with api.config.i18n.updateFiles = true, you will see ActionHero generate a 'locales' folder at the top level of your project which will contain translations of all strings in your project with are passed though the new localization system. This includes all uses of api.i18n.localize and connection.localize.


	We use mustache-style localization






	From here, it is an easy matter to change the strings, per locale, to how you would like them presented back in your application. The next time you restart the server, the values you've updated in your locale strings file will be used.


	disable api.config.i18n.updateFiles if you do not want this behavior.







Connection Locale

Since every ActionHero implementation is unique, we do not ship with a "guess" about how to determine a given connection's locale. Perhaps you have an HTTP server and you can trust your client's accept-language headers. Or perhaps you run your API under a number of different host names and you can presume locale based on them. Whatever the case, you need to create a async method in an initializer which will be called when each connection connects to return its locale.

For example, I may have an initializer in my project like this:

const {Initializer} = require('actionhero')

module.exports = class DetermineConnectionLocale extends Initializer {
  constructor () {
    super()
    this.name = 'determineConnectionLocale'
  }

  initialize () {
    api.customLocalization = {
      lookup: (connection) => {
        let locale = 'en';

        if(connection.type === 'web'){
          const host = connection.rawConnection.req.headers.host
          if(host === 'usa.site.com'){ locale = 'en-US'; }
          if(host === 'uk.site.com'){  locale = 'en-GB'; }
          if(host === 'es.site.com'){  locale = 'es-ES'; }
          if(host === 'mx.site.com'){  locale = 'es-MX'; }
        }

        return locale
      }
    }
  }
}





To tell i18n to use this method with a new connection, set api.config.i18n.determineConnectionLocale = 'api.customLocalization.lookup'.  Now you can localize responses in actions, based on which hostname a connection uses.

const {Action} = require('actionhero')

module.exports = class RandomNumber extends Action {
  constructor () {
    super()
    this.name = 'randomNumber'
    this.description = 'I am an API method which will generate a random number, returning both the number and a localized string'
    this.outputExample = {
      number: 0.234,
      localizedResponse: 'Your random number is 0.234'
    }
  }

  async run ({connection, response}) {
    const number = Math.random()
    const localizedResponse = connection.localize(['Your random number is {{number}}', {number: number}])
    response.message = localizedResponse
    response.number = number
  }
}








Connection Methods


	connection.localize(string) or connection.localize([string-with-interpolation, values])


	Allows you to interpolate a string based on the connection's current locale. For example, say in an action you wanted to respond with {CountExample} In your locale files, you would define the count was {{count}} in every language you cared about, and not need to modify the action itself at all.











Other Strings


	To localize strings that are not used in methods mentioned above you can use api.i18n.localize(string, options).


	Allows you to interpolate a string.


	Just as the other localize methods above, the input string will be in your locale files for you to change it anytime you want.


	The second options optional argument (default value is api.i18n) allows you to configure [https://github.com/mashpie/i18n-node#list-of-all-configuration-options] i18n. Note that you will use this argument only in very few special cases, It is recommended to edit the global api.config.i18n settings to suit your localization needs.












          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

ActionHero uses the Winston logger [https://github.com/flatiron/winston]. This allows for better, more customizable logging.




Defaults

// config/logger.js

config.logger = {
  transports: [
    (api) => {
      return new (winston.transports.Console)({
        colorize: true,
        level: "debug",
      });
    },

    (api) => {
      return new (winston.transports.File)({
        filename: './log/' + api.pids.title + '.log',
        level: "info",
        timestamp: true,
      });
    }
  ]
};





In your config/logger.js, you can customize which transports you would like the logger to use. If none are provided, a default logger which only will print to stdout will be used. See winston's documentation for all the logger types, but know that they include console, file, s3, riak, and more.

You can set a transport directly, IE new (winston.transports.Console)() or in a function which will be passed the api object like the examples above. The benefit of using the function invocation is you will have access to other methods and configuration options (like the title of the process).




Levels

api.log('hello'); // will use the default, 'info' level
api.log('debug message', 'debug') // will not show up unless you have configured your logger in this NODE_ENV to be debug
api.log('OH NO', 'emerg') // will show up in all logger levels
api.log('the params were', 'info', data.params) // you can log objects too





Note that you can set a level which indicates which level (and those above it) you wish to log per transport. The log levels are:


	0=debug


	1=info


	2=notice


	3=warning


	4=error


	5=crit


	6=alert


	7=emerg




You can customize these via api.config.logger.levels and api.config.logger.colors. See Winston's documentation for more information [https://github.com/winstonjs/winston#using-custom-logging-levels]

For example, if you set the logger's level to "notice", you would also see "crit" messages, but not "debug" messages.

To invoke the logger from your code, use: api.log(message, severity, metadata).  Learn more here





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

There are 4 types of middleware in ActionHero:


	Action


	Connection


	Chat


	Task




Each type of middleware is distinct from the others, and operates on distinct parts of a client's lifecycle. For a logical example, please inspect the following connection lifecycle:

> Client **Connects**
# connection middleware, \`create\` hook

> Client requests an **action**
# action middleware, \`preProcessor\` hook
# action middleware, \`postProcessor\` hook

> Client **joins a room**
# chat middleware, \`join\` hook

> Client **says a message** in a room
# chat middleware, \`say\` hook
# chat middleware, \`onSayReceive\` hook

> Client requests a **disconnect** (quit)
# chat middleware, \`leave\` hook
# connection middleware, \`destroy\` hook

> Client executes a **task**
# task middleware, \`preProcessor\` hook
# task middleware, \`postProcessor\` hook








Action Middleware

[image: ]

const middleware = {
  name: 'userId checker',
  global: false,
  priority: 1000,
  preProcessor: (data) => {
    if(!data.params.userId){
      throw new Error('All actions require a userId')
    }
  },
  postProcessor (data) => {
    if(data.thing.stuff == false){ data.toRender = false }
  }
}

api.actions.addMiddleware(middleware)





ActionHero provides hooks for you to execute custom code both before and after the execution of all or some actions. This is a great place to write authentication logic or custom loggers.

Action middleware requires a name and at least one of preProcessor or postProcessor. Middleware can be global, or you can choose to apply each middleware to an action specifically via action.middleware = [] in the action's definition. You supply a list of middleware names, like action.middleware = ['userId checker'] in the example above.

Each processor is passed data. Just like within actions, you can modify the data object to add to data.response to create a response to the client. If an error is thrown, the action will not execute, and data.response.error will contain the error.  If a preProcessor has an error, the action will never be called.

The priority of a middleware orders it with all other middleware which might fire for an action. All global middleware happen before locally defined middleware on an action.  Lower numbers happen first. If you do not provide a priority, the default from api.config.general.defaultProcessorPriority will be used.


The Data Object

data contains the same information as would be passed to an action:

data = {
  connection: {},
  action: 'randomNumber',
  toRender: true,
  messageCount: 1,
  params: { action: 'randomNumber', apiVersion: 1 },
  actionStartTime: 1429531553417,
  actionTemplate: {}, // the actual object action definition
  response: {},
}










Connection Middleware

const connectionMiddleware = {
  name: 'connection middleware',
  priority: 1000,
  create: (connection) => {
    api.log('connection joined')
  },
  destroy: (connection) => {
    api.log('connection left')
  }
};

api.connections.addMiddleware(connectionMiddleware)





Like the action middleware above, you can also create middleware to react to the creation or destruction of all connections. Unlike action middleware, connection middleware is non-blocking and connection logic will continue as normal regardless of what you do in this type of middleware.

Keep in mind that some connections persist (webSocket, socket) and some only exist for the duration of a single request (web). You will likely want to inspect connection.type in this middleware. Again, if you do not provide a priority, the default from api.config.general.defaultProcessorPriority will be used.

Any modification made to the connection at this stage may happen either before or after an action, and may or may not persist to the connection depending on how the server is implemented.




Chat Middleware

var chatMiddleware = {
  name: 'chat middleware',
  priority: 1000,
  join: (connection, room) => {
    // announce all connections entering a room
    await api.chatRoom.broadcast({}, room, 'I have joined the room: ' + connection.id)
  },
  leave: (connection, room) => {
    // announce all connections leaving a room
    await api.chatRoom.broadcast({}, room, 'I have left the room: ' + connection.id)
  },
  /**
   * Will be executed once per client connection before delivering the message.
   */
  say: (connection, room, messagePayload) => {
    // do stuff
    api.log(messagePayload)
    messagePayload.cool = true
    return messagePayload
  },
  /**
   * Will be executed only once, when the message is sent to the server.
   */
  onSayReceive: function(connection, room, messagePayload){
    // do stuff
    api.log(messagePayload)
    messagePayload.recievedAt = (new Date()).getTime()
    return messagePayload
  }
};

api.chatRoom.addMiddleware(chatMiddleware)





The last type of middleware is used to act when a connection joins, leaves, or communicates within a chat room. We have 4 types of middleware for each step: say, onSayReceive, join, and leave.

Priority is optional in all cases, but can be used to order your middleware. If an error is returned thrown any of these methods, it will be returned to the client, and the action/verb/message will not be sent.

More detail and nuance on chat middleware can be found in the chat tutorial


Chat Middleware Notes


	In the example above, I want to announce the member joining the room, but he has not yet been added to the room, as the join logic is still firing. If the connection itself were to make the broadcast, it would fail because the connection is not in the room. Instead, an empty {} connection is used to proxy the message coming from the 'server'.


	Only the sayCallbacks return messagePayload. This allows you to modify the message being sent to your clients.


	messagePayload will be modified and and passed on to all middlewares inline, so you can append and modify it as you go






	If you have a number of callbacks (say, onSayReceive, join or leave), the priority maters, and you can block subsequent methods from firing by throwing an error.


	sayCallbacks are executed once per client connection. This makes it suitable for customizing the message based on the individual client.


	onSayReceiveCallbacks are executed only once, when the message is sent to the server.




// in this example no one will be able to join any room, and the \`say\` middleware will never be invoked.

api.chatRoom.addMiddleware({
  name: 'blocking chat middleware',
  join: (connection, room) => {
    throw new Error('blocked from joining the room')
  }),

  say: (connection, room, messagePayload) => {
    api.chatRoom.broadcast({}, room, 'I have entered the room: ' + connection.id)
  },
});





If a say is blocked via an error thrown, the message will simply not be delivered to the client. If a join or leave is blocked, the verb or method used to invoke the call will be returned that error.






Task Request Flow

[image: ]




Task Middleware

Task middleware is implemented as a thin wrapper around Node Resque plugins and currently exposes the beforePerform, afterPerform, beforeEnqueue, and afterEnqueue functions of Resque. Each middleware requires a name and at least one function. In addition, a middleware can be global, in which case it also requires a priority.

In the preProcessor, you can access the original task params through this.args[0]. In the postProcessor, you can access the task result at this.worker.result. In the preEnqueue and postEnqueue you can access the task params through this.args[0]. If you wish to prevent a task from being enqueued using the preEnqueue middleware you must explicitly set the toRun value to false in the callback. Because the task middleware is executed by Resque this is an instance of a Resque Worker and contains a number of other elements which may be useful in a middleware.


Task Middleware Example

The following example is a simplistic implementation of a task execution timer middleware.

const {api, Initializer} = require('actionhero')

module.exports = new Class extends Initializer {
  constructor () {
    super()
    this.name = 'task middleware'
  }

  initialize: () => {
    const middleware = {
      name: 'timer',
      global: true,
      priority: 90,
      preProcessor: async () => {
        const worker = this.worker
        worker.startTime = process.hrtime()
      },
      postProcessor: async () => {
        const worker = this.worker
        const elapsed = process.hrtime(worker.startTime)
        const seconds = elapsed[0]
        const millis = elapsed[1] / 1000000
        api.log(worker.job.class + ' done in ' + seconds + ' s and ' + millis + ' ms.', 'info')
      },
      preEnqueue: async () => {
        const arg = this.args[0]
        return (arg === 'ok') // returing `false` will prevent the task from enqueing
      },
      postEnqueue: async () => {
        api.log("Task successfully enqueued!")
      }
    }

    api.tasks.addMiddleware(middleware)
  }
}











          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

You can create and include plugins for you ActionHero project. Plugins are collections of tasks, actions, servers, initializers, and public static assets that are collected as a module. You can install plugins via NPM or keep them in a local path.  This enables a few useful features:


	Sharing and re-using common code


	Composing your application via namespaced plugins for simpler SOA development.




Plugins are loaded after all local ActionHero project files, but initializers follow the same priority scheme as all other initializers.




Creating

/
| - actions
| - tasks
| - servers
| - initializers
| - config
| - public
| - cli
|
| - package.json





To create a plugin, create a project with the above structure via actionhero generate plugin.  Note that actionhero should be a peerDependnacy within your plugin, with the proper version.

This structure will allow elements to be loaded into ActionHero (we search /actions for actions, /tasks for tasks, etc)

When developing your plugin locally, you can load it into an existing ActionHero project to test it out.

To include your plugin in an actionHero project, add it to config/plugins.js

// If you want to use plugins in your application, include them here:
return {
  'myPlugin': { path: __dirname + '/../node_modules/myPlugin' }
}

// You can also toggle on or off sections of a plugin to include (default true for all sections):
return {
  'myPlugin': {
    path: __dirname + '/../node_modules/myPlugin',
    actions: true,
    tasks: true,
    initializers: true,
    servers: true,
    cli: true,
    public: true
  }
}





Please use the npm naming convention ah-(name)-plugin when uploading your plugin to npm




Testing

This new plugin structure also makes testing plugins much easier, as you can boot up an ActionHero server from within your plugin (if actionhero is a devDependancy) with the following:

const path = require('path')
process.env.PROJECT_ROOT = path.join(__dirname, '..', 'node_modules', 'actionhero')
const ActionHero = require('actionhero')
const actionhero = new ActionHero.Process()
let api

describe('My Plugin', () => {
  before(async () => {
    let configChanges = {
      plugins: {
        'testPlugin': { path: path.join(__dirname, '..') }
      }
    }

    api = await actionhero.start({configChanges})
  })

  after(async () => { await actionhero.stop() })

  it('does stuff', async () => {
    //...
  })
})








Methods

When creating plugins, you may find yourself wanting to do things which could normally be accomplished easily with a "top level" ActionHero project, but might be difficult from within a plugin. Here are some helpers:


Routes:


	api.routes.registerRoute(method, path, action, apiVersion, matchTrailingPathParts)


	Add a route to the system.













Published

You can view a list of plugins maintained by @l0oky [https://github.com/l0oky] via [image: Awesome] [https://github.com/l0oky/awesome-actionhero]





          

      

      

    

  

  
    
    Topology Example
    

    
 
  
  

    
      
          
            
  [image: ]


Topology Example

Here is a common ActionHero production topology:

[image: AH Cluster]

Notes:


	It's best to separate the "workers" from the web "servers" into distinct processes.


	Be sure to modify the config files for each type of server accordingly (ie: turn of all servers for the workers, and turn of all workers on the servers).






	To accomplish the above, you only need to make changes to your configuration files on each server. You will still be running the same same ActionHero project codebase. See the example:


	Always have a replica of redis!




// Assume we use the flag \`process.env.ACTIONHERO_ROLE\` to denote the type of server
// You can set this variable in the ENV of your server or launch each process with the flag:
// Worker => \`ACTIONHERO_ROLE='worker' npm start\`
// Server => \`ACTIONHERO_ROLE='server' npm start\`

// config/tasks.js

exports.production = {
    tasks: function(api){

        // default to config for 'server'
        let config = {
          scheduler: false,
          queues: ['*'],
          verbose: true,
          // ...
        };

        if(process.env.ACTIONHERO_ROLE === 'worker'){
            config.scheduler = true;
            config.minTaskProcessors = 1;
            config.maxTaskProcessors = 10;
        }

        return config;
    }
};

// config/servers/web.js

exports.default = {
    servers: {
        web: function(api){
            config = {
                enabled: true,
                secure: false,
                serverOptions: {},
                port: process.env.PORT || 8080
                // ...
            };

            if(process.env.ACTIONHERO_ROLE === 'worker'){
                config.enabled = false;
            }

            return config;
        }
    }
};








Paths and Environments

You can set a few environment variables to affect how ActionHero runs:


	PROJECT_ROOT: This is useful when deploying ActionHero applications on a server where symlinks will change under a running process. The cluster will look at your symlink PROJECT_ROOT=/path/to/current_symlink rather than the absolute path it was started from


	ACTIONHERO_ROOT: This can used to set the absolute path to the ActionHero binaries


	ACTIONHERO_CONFIG: This can be user to set the absolute path to the ActionHero config directory you wish to use. This is useful when you might have a variable configs per server


	ACTIONHERO_TITLE: The value of api.id, and the name for the pidfile in some boot configurations







Daemon

When deploying ActionHero, you will probably have more than 1 process. You can use the cluster manager to keep an eye on the workers and manage them


	Start the cluster with 2 workers: actionhero start cluster --workers=2




When deploying new code, you can gracefully restart your workers by sending the USR2 signal to the cluster manager to signal a reload to all workers. You don't need to start and stop the cluster-master. This allows for 0-downtime deployments.

You may want to set some of the ENV variables above to help with your deployment.




Number of Workers

When choosing the number of workers (--workers=n) for your ActionHero cluster, choose at least 1 less than the number of CPUs available. If you have a "burstable" architecture (like a Joyent smart machine), opt for the highest number of 'consistent' CPUs you can have, meaning a number of CPUs that you will always have available to you.

You never want more workers than you can run at a time, or else you will actually be slowing down the execution of all processes.

Of course, not going in to swapping memory is more important than utilizing all of your CPUs, so if you find yourself running out of RAM, reduce the number of workers!




Pidfiles

ActionHero will write its pid to a pidfile in the normal unix way. The path for the pidfile is set in config/api.js with config.general.paths.pid.

Individual ActionHero servers will name their pidfiles by api.id, which is determined by the logic here [https://github.com/actionhero/actionhero/blob/master/initializers/pids.js] and here [https://github.com/actionhero/actionhero/blob/master/initializers/id.js]. For example, on my laptop with the IP address of 192.168.0.1, running npm start would run one ActionHero server and generate a pidfile of ./pids/actionhero-192.168.0.1 in which would be a single line containing the process' pid.

When running the cluster, the cluster process first writes his own pidfile to process.cwd() + './pids/cluster_pidfile'. Then, every worker the cluster master creates will have a pid like actionhero-worker-1 in the location defined by config/api.js.

To send a signal to the cluster master process to reboot all its workers (USR2), you can cat the pidfile (bash): kill -s USR2 'cat /path/to/pids/cluster_pidfile'




Git-based Deployment

If you want to setup a git-based 0-downtime deployment, the simplest steps would be something like =>

#!/usr/bin/env bash
# assuming the ActionHero cluster master process is already running

DEPLOY_PATH=/path/to/your/application

cd $DEPLOY_PATH && git pull
cd $DEPLOY_PATH && npm install
# run any build tasks here, like perhaps an asset compile step or a database migration
cd $DEPLOY_PATH && kill -s USR2 \`cat pids/cluster_pidfile\`








PAAS and Procfile Deployment

When deploying to a Platform as a Service (PAAS) cluster (like Heroku [https://heroku.com], Flynn [https://flynn.io], and even some Docker [https://www.docker.com] deployments), we can offer a few pieces of advice.

If you are deploying a separate WEB and WORKER process type, you can define them in a Procfile [https://devcenter.heroku.com/articles/procfile] and make use of environment variable overrides in addition to those defined from the environment. You can modify your config files to use these options:

# ./Procfile
web:    SCHEDULER=false \\
        MIN_TASK_PROCESSORS=0 \\
        MAX_TASK_PROCESSORS=0 \\
        ENABLE_WEB_SERVER=true  \\
        ENABLE_TCP_SERVER=true  \\
        ENABLE_WEBSOCKET_SERVER=true  \\
        ./node_modules/.bin/actionhero start

worker: SCHEDULER=true  \\
        MIN_TASK_PROCESSORS=5 \\
        MAX_TASK_PROCESSORS=5 \\
        ENABLE_WEB_SERVER=false \\
        ENABLE_TCP_SERVER=false \\
        ENABLE_WEBSOCKET_SERVER=false \\
        ./node_modules/.bin/actionhero start





Be sure not to use NPM in your Procfile definitions. In many deployment scenarios, NPM will not properly pass signals to the ActionHero process and it will be impossible to signal a graceful shutdown. Examples of this behavior can be found here [https://github.com/flynn/flynn/issues/3601] and here [https://github.com/npm/npm/issues/4603]




Global Packages

It is best to avoid installing any global packages. This way, you won't have to worry about conflicts, and your project can be kept up to date more easily. When using npm to install a local package the package's binaries are always copied into ./node_modules/.bin.

You can add local references to your $PATH like so to use these local binaries:

export PATH=$PATH:node_modules/.bin

ActionHero is not designed to function when installed globally.  Do not install ActionHero globally, using npm install -g




Nginx Example

While ActionHero can be the font-line server your users hit, it's probably best to proxy ActionHero behind a load balancer, nginx, haproxy, etc. This will help you pool connections before hitting node, SSL terminate, serve static assets, etc.

Here is an example nginx config for interfacing with ActionHero, including using sockets (not http) and handing the websocket upgrade path.


	Note the proxy-pass format to the socket: {proxy_pass http://unix:/path/to/socket}


	Note some of the extra work you need to have for the websocket upgrade headers (the primus directive)




// From \`config/servers/web.js\`

exports.production = {
  servers: {
    web: function(api){
      return {
        port: '/home/USER/www/APP/current/tmp/sockets/actionhero.sock',
        bindIP: null,
        metadataOptions: {
          serverInformation: false,
          requesterInformation: false
        }
      }
    }
  }
}





# The nginx.conf:

#user  nobody;
worker_processes  4;

error_log  /var/log/nginx/error.log warn;
pid        /var/run/nginx.pid;


events {
  worker_connections 1024;
  accept_mutex on;
}


http {
    include       mime.types;
    default_type  application/octet-stream;
    server_tokens off;
    sendfile        on;
    keepalive_timeout  65;

    set_real_ip_from  X.X.X.X/24;
    real_ip_header    X-Forwarded-For;

    gzip on;
    gzip_http_version 1.0;
    gzip_comp_level 9;
    gzip_proxied any;
    gzip_types text/plain text/xml text/css text/comma-separated-values text/javascript application/x-javascript font/ttf font/otf image/svg+xml application/atom+xml;

    log_format  main  '$remote_addr - $remote_user [$time_local] "$request" $status $body_bytes_sent "$http_referer" "$http_user_agent" "$http_x_forwarded_for" $request_time';

    server {
        proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
        proxy_set_header Host $http_host;
        proxy_set_header X_FORWARDED_PROTO https;
        proxy_redirect off;

        listen       80;
        server_name  _;

        access_log  /var/log/nginx/access.log  main;
        error_log   /var/log/nginx/error.log;

        root        /home/XXUSERXX/XXAPPLICATIONXX/www/current/public/;
        try_files /$uri/index.html /cache/$uri/index.html /$uri.html /cache/$uri.html /$uri /cache/$uri @app;

        client_max_body_size 50M;

        location /primus {
            proxy_http_version 1.1;
            proxy_buffering off;
            proxy_set_header Upgrade $http_upgrade;
            proxy_set_header Connection "Upgrade";
            proxy_set_header Host $host;

            proxy_pass http://unix:/home/XXUSERXX/www/XXAPPLICATIONXX/shared/tmp/sockets/actionhero.sock;
        }

        location / {
            proxy_http_version 1.1;
            proxy_buffering off;
            proxy_cache_bypass $http_pragma $http_authorization;
            proxy_no_cache $http_pragma $http_authorization;

            proxy_pass http://unix:/home/XXUSERXX/www/XXAPPLICATIONXX/shared/tmp/sockets/actionhero.sock;
        }
    }

}








Redis High-Availability

Redis [http://redis.io/] is technically optional in ActionHero environments, but you will need it if you want to coordinates tasks across a cluster of workers, handle group chat mechanics between WebSocket clients, or do other cross-cluster operations. In those cases, you'll want your Redis setup to be reliable. There are 2 methods to achieving HA redis: Sentinels and Cluster. A simple architectural wireframe of how to deploy the various options is below The ioredis [https://github.com/luin/ioredis] node package supports both of these connection schemes, and all you need to change is your connection options.

[image: ]


Sentinel Mode

In Sentinel mode, you have your Redis configured in a normal master->slave configuration. However, rather than hard-code your application to know who the master and slaves are, your application connects to the Sentinel processes instead. These Sentinels transparently pipeline your connection to the proper Redis master, and they do this invisibly to ActionHero / your application.

The biggest advantage to this configuration is high-availability. In the event of a master failure, the Sentinel processes reach a consensus, then elect a new master automatically. Since the same process which handles master election also manages the client connections, no requests are lost - the sentinels hold the connection idle and then replay any pending requests on the new master after election. In the configuration shown in the first diagram above, up to 2 Redis data nodes and any 1 Sentinel can fail without the entire system failing.

Note that it is not necessary to run the Sentinel nodes on separate servers. They can be run as parallel processes on the Redis nodes themselves.

To run this configuration, configure ioredis with a list of the Sentinel nodes and the name of the cluster. The driver will automatically connect to an appropriate Sentinel in round-robin fashion, reconnecting to another node if one is down, or fails.

An example of a redis.js config file for sentinels would be:

exports.production = {
  redis: function(api){
    return {
      channel: 'actionhero-myApp',
      rpcTimeout: 5000,

      pkg: 'ioredis',
      port: null,
      host: null,
      password: 'redis-password',
      database: 0,

      options: {
        name: 'myCluster',
        password: 'redis-password',
        db: 0,
        sentinels: [
          { host: '1.2.3.4', port: 26379 },
        ]
      }
    }
  }
}








Cluster Mode

In Cluster mode, Redis shards all the keys in data into "slots" which are evenly allocated though all the masters in the cluster. The client can connect to any node in the cluster, and if the requested key belongs on another node, it will proxy the request for you (just like the Sentinel would). The cluster can also take care of master re-election for each shard in the event of a master node failure.

Cluster mode provides similar high-availability to Sentinel mode, but the sharding allows more data to be stored in the cluster overall. However, where Sentinel mode requires a minimum of 3 servers, Cluster mode requires a minimum of 6 to reach a quorom and provide full redundancy.

Also an important note: while you may opt to run "sentinel processes", it's the same codebase as regular redis, just running in "sentinel mode". The same goes if you run redis in "cluster mode".

An example of a redis.js config file for redis cluster would be: TODO






Best Practices

As ActionHero is a framework, much of the work for keeping your application secure is dependent on the types of actions and tasks you create. That said, here is a list of general best-practices for ensuring your deployment is as robust as it can be:


General Configuration


	Be sure to change api.config.general.serverToken to something unique for your application


	Turn off developer mode in production.


	Use api.config.general.filteredParams to hide sensitive information from the logs. You probably don't want to log out password, credit_card, and other things of that nature.







Topology

Run a cluster via start cluster. This will guarantee that you can reboot your application with 0 downtime and deploy new versions without interruption.


	You can run 1 ActionHero instance per core (assuming the server is dedicated to ActionHero), and that is the default behavior of start cluster.


	You don't need a tool like PM2 to manage ActionHero cluster process, but you can use it if you like.


	You can use an init script to start cluster at boot, or use a tool like monit [https://mmonit.com/monit/] to do it for you.




Never run tasks on the same ActionHero instances you run your servers on; never run your servers on the same ActionHero instances you run your tasks on.


	Yes, under most situations running servers + tasks on the same instance will work OK, but the load profiles (and often the types of packages required) vary in each deployment. Actions are designed to respond quickly and offload hard computations to tasks. Tasks are designed to work slower computations.


	Do any CPU-intensive work in a task. If a client needs to see the result of a CPU-intensive operation, poll for it (or use web-sockets)




Use a centralized logging tool like Splunk, ELK, SumoLogic, etc. ActionHero is /built for the cloud/, which means that it expects pids, application names, etc to change, and as such, will create many log files. Use a centralized tool to inspect the state of your application.


	Log everything. You never know what you might want to check up on. {ActionHero's} logger has various levels you can use for this.




Split out the redis instance you use for cache from the one you use for tasks. If your cache fills up, do you want task processing to fail?

Your web request stack should look like: [Load Balancer] -> [App Server] -> [Nginx] -> [ActionHero]


	This layout allows you to have control, back-pressure and throttling at many layers.


	Configure Nginx to serve static files whenever possible to remove load from ActionHero, and leave it just to process actions




Use a CDN. ActionHero will serve static files with the proper last-modified headers, so your CDN should respect this, and you should not need to worry about asset SHAs/Checksums.

Use redis-cluster or redis-sentinel. The ioredis [https://github.com/luin/ioredis] redis library has support for them by default. This allows you to have a High Availability redis configuration.




Crashing and Safety

> ./node_modules./bin/actionhero start cluster --workers 1
2016-04-11T18:51:32.891Z - info: actionhero >> start cluster
2016-04-11T18:51:32.904Z - notice:  - STARTING CLUSTER -
2016-04-11T18:51:32.905Z - notice: pid: 43315
2016-04-11T18:51:32.911Z - info: starting worker #1
2016-04-11T18:51:33.097Z - info: [worker #1 (43316)]: starting
2016-04-11T18:51:33.984Z - info: [worker #1 (43316)]: started
2016-04-11T18:51:33.985Z - notice: cluster equilibrium state reached with 1 workers
2016-04-11T18:51:44.775Z - alert: [worker #1 (43316)]: uncaught exception => yay is not defined
2016-04-11T18:51:44.775Z - alert: [worker #1 (43316)]:    ReferenceError: yay is not defined
2016-04-11T18:51:44.775Z - alert: [worker #1 (43316)]:        at Object.exports.action.run (/app/actionhero/actions/bad.js:14:5)
2016-04-11T18:51:44.775Z - alert: [worker #1 (43316)]:        at /app/actionhero/initializers/ActionProcessor.js:268:31
2016-04-11T18:51:44.775Z - alert: [worker #1 (43316)]:        at /app/actionhero/initializers/ActionProcessor.js:149:9
2016-04-11T18:51:44.776Z - alert: [worker #1 (43316)]:        at /app/actionhero/node_modules/async/lib/async.js:726:13
2016-04-11T18:51:44.776Z - alert: [worker #1 (43316)]:        at /app/actionhero/node_modules/async/lib/async.js:52:16
2016-04-11T18:51:44.776Z - alert: [worker #1 (43316)]:        at iterate (/app/actionhero/node_modules/async/lib/async.js:260:24)
2016-04-11T18:51:44.776Z - alert: [worker #1 (43316)]:        at async.forEachOfSeries.async.eachOfSeries (/app/actionhero/node_modules/async/lib/async.js:281:9)
2016-04-11T18:51:44.776Z - alert: [worker #1 (43316)]:        at _parallel (/app/actionhero/node_modules/async/lib/async.js:717:9)
2016-04-11T18:51:44.776Z - alert: [worker #1 (43316)]:        at Object.async.series (/app/actionhero/node_modules/async/lib/async.js:739:9)
2016-04-11T18:51:44.777Z - alert: [worker #1 (43316)]:        at api.ActionProcessor.preProcessAction (/app/actionhero/initializers/ActionProcessor.js:148:13)
2016-04-11T18:51:44.777Z - notice: cluster equilibrium state reached with 1 workers
2016-04-11T18:51:44.785Z - info: [worker #1 (43316)]: exited
2016-04-11T18:51:44.785Z - info: starting worker #1
2016-04-11T18:51:44.960Z - info: [worker #1 (43323)]: starting
2016-04-11T18:51:45.827Z - info: [worker #1 (43323)]: started
2016-04-11T18:51:45.827Z - notice: cluster equilibrium state reached with 1 workers





Let the app crash rather than being defensive prematurely. ActionHero has a good logger, and if you are running within start cluster mode, your server will be restarted. It is very easy to hide uncaught errors, exceptions, or un-resolved promises, and doing so might leave your application in strange state.

We removed domains from the project in v13 to follow this philosophy, and rely on a parent process (start cluster) to handle error logging. Domains are deprecated in node.js now for the same reasons we discuss here.


	For example, if you timeout connections that are taking too long, what are you going to do about the database connection it was running? Will you roll it back? What about the other clients using the same connection pool? How can you be sure which connection in the mySQL pool was in use? Rather than handle all these edge cases… just let your app crash, log, and reboot.




As noted above, centralized logging (Splunk et al) will be invaluable here. You can can also employ a tool like BugSnag [https://bugsnag.com] to collect and correlate errors.




Actions

Remember that all params which come in via the web and socket servers are Strings. If you want to typeCast them (perhaps you always know that the param user_id will be an integer), you can do so in a middleware or within an action's params.formatter step.

Always remember to sanitize any input for SQL injection, etc. The best way to describe this is "never pass a query to your database which can be directly modified via user input"!

Remember that you can restrict actions to specific server types. Perhaps only a web POST request should be able to login, and not a websocket client. You can control application flow this way.

Crafting authentication middleware is not that hard [https://github.com/actionhero/actionhero-angular-bootstrap-cors-csrf]




Tasks

Tasks can be created from any part of ActionHero: Actions, Servers, Middleware, even other Tasks.

You can chain tasks together to create workflows.

ActionHero uses the multiWorker [https://github.com/taskrabbit/node-resque#multi-worker] from node-resque. When configured properly, it will consume 100% of a CPU core, to work as many tasks at once as it can. This will also fluctuate depending on the CPU difficulty of the job. Plan accordingly.

Create a way to view the state of your redis cluster. Are you running out of RAM? Are your Queues growing faster than they can be worked? Checking this information is the key to having a healthy ecosystem. The methods for doing so are available.

Be extra-save within your actions, and do not allow an uncaught exception. This will cause the worker to crash and the job to be remain 'claimed' in redis, and never make it to the failed queue.







          

      

      

    

  

  
    
    The ActionHero Binary
    

    
 
  
  

    
      
          
            
  [image: ]


The ActionHero Binary

The suggested method to run your ActionHero server is to use the included ./node_modules/.bin/actionhero binary. Note that there is no main.js or specific start script your project needs. ActionHero handles this for you. Your ActionHero project simply needs to follow the proper directory conventions and it will be bootable.

The help for this binary is as follows:

--------------------------------------
ACTIONHERO COMMAND >> help
--------------------------------------
ActionHero - A multi-transport node.js API Server with integrated cluster capabilities and delayed tasks

Binary options:

* actions list
* console
* generate
* generate action
* generate cli
* generate initializer
* generate plugin
* generate server
* generate task
* help
* start
* start cluster
* task enqueue
* version

Descriptions:

* actions list
  description: I will list the actions defined on this server

* console
  description: start an interactive REPL session with the api object in-scope

* generate
  description: will prepare an empty directory with a template ActionHero project

* generate action
  description: generate a new action
  example: actionhero generate action --name=[name] --description=[description]
  inputs:
    [name]
    [description]
      default: an actionhero action

* generate cli
  description: generate a new cli command
  example: actionhero generate cli --name=[name]
  inputs:
    [name]
    [description] (optional)
      default: an actionhero cli command
    [example] (optional)
      default: actionhero command --option=yes

* generate initializer
  description: generate a new initializer
  example: actionhero generate initializer --name=[name] --loadPriority=[p] --startPriority=[p] --stopPriority=[p]
  inputs:
    [name]
    [loadPriority]
      default: 1000
    [startPriority]
      default: 1000
    [stopPriority]
      default: 1000

* generate plugin
  description: generate the structure of a new actionhero plugin in an empty directory
  example: actionhero generate plugin

* generate server
  description: generate a new server
  example: actionhero generate server --name=[name]
  inputs:
    [name]

* generate task
  description: generate a new task
  example: actionhero generate task --name=[name] --description=[description] --scope=[scope] --frequency=[frequency]
  inputs:
    [name]
    [queue]
    [description]
      default: an actionhero task
    [frequency]

* help
  description: get actonhero CLI help; will display this document

* start
  description: start this ActionHero server
  example: actionhero start --config=[/path/to/config] --title=[processTitle] --daemon
  inputs:
    [config] (optional)
      note: path to config.js, defaults to "process.cwd()" + '/' + config.js. You can also use ENV[ACTIONHERO_CONFIG]
    [title] (optional)
      note: process title to use for ActionHero\'s ID, ps, log, and pidFile defaults. Must be unique for each member of the cluster. You can also use ENV[ACTIONHERO_TITLE]. Process renaming does not work on OSX/Windows
    [daemon] (optional)
      note: to fork and run as a new background process defaults to false

* start cluster
  description: start an actionhero cluster
  example: actionhero start cluster --workers=[numWorkers] --workerTitlePrefix=[title] --daemon
  inputs:
    [workers]
      note: number of workers (defaults to # CPUs)
      default: 8
    [title] (optional)
      note: worker title prefix (default 'actionhero-worker-') set `--workerTitlePrefix=hostname`, your app.id would be like your_host_name-#
    [workerTitlePrefix]
      default: actionhero-worker-
    [daemon] (optional)
      note: to fork and run as a new background process defaults to false
    [silent] (optional)

* task enqueue
  description: enqueue a defined task into your actionhero cluster
  example: actionhero task enqueue --name=[taskName] --args=[JSON-formatted args]
  inputs:
    [name]
    [args] (optional)
    [params] (optional)

* version
  description: return the ActionHero version within this project








Linking the ActionHero Binary

ActionHero is not designed to function when installed globally.  Do not install ActionHero globally, using npm install -g.  Modern versions of NPM (v5+) allow you to also use the npx command, ie: npx actionhero start cluster --workers=2, which is a simple way to get to the ActionHero binary from the top-level of your project.  Otherwise defining scripts referencing actionhero in your package.json is the best way to run ActionHero:

{
  "name": "my ActionHero project",
  "scripts": {
    "start" : "actionhero start",
    "help" : "actionhero help",
    "pretest": "standard",
    "test" : "cross-env NODE_ENV=test mocha"
  }
}








Environments and Config

By default, ActionHero will use the settings found in the exports.default blocks in /config/. However, you can set environment-specific overrides or changes. ActionHero inspects process.env.NODE_ENV to load up runtime configuration overrides from exports.#{env} blocks in your configuration files. This is the recommended way to have separate settings for staging and production.

The load order of configs is:


	default values in /config


	environment-specific values in /config


	options passed in to boot with actionhero.start({configChanges: configChanges})




You can {configChanges: {}} to a new ActionHero.Process' start or initialize methods.  This can be helpful when creating tests. When using CLI commands, you can also set process.env.configChanges or pass --configChanges on the command line. In these cases, configChanges should be stringified JSON.

// from ./config/namespace.js
exports['default'] = {
  namespace: function (api) {
    return {
      enabled: true,
      safe: false
    }
  }
}

exports.production = {
  namespace: function (api) {
    return {
      safe: true
    }
  }
}





In the example above, we are defining api.config.namespace.enabled and api.config.namespace.safe. In all environments (NODE_ENV) api.config.namespace.enabled = true Only in production would api.config.namespace.safe = true, it is false everywhere else.




Programatic Use of ActionHero

While NOT encouraged, you can always instantiate an ActionHero process yourself. Perhaps you wish to combine ActionHero with an existing project. Here is how! Take note that using these methods will not work for a cluster process, and only a single instance will be started within your project.

const {Process} = require("actionhero")
const actionhero = new Process()

const sleep = (time) => {
  if (!time) { time = 5000 }
  return new Promise((resolve) => {
    setTimeout(resolve, time)
  })
}

const api = await actionhero.start({configChanges})

api.log(" >> Boot Successful!")
await sleep()

api.log(" >> restarting server...")
await actionhero.restart()
api.log(" >> Restarted!")
await sleep()

api.log(" >> stopping server...")
await actionhero.stop()
api.log(" >> Stopped!")
process.exit()





Feel free to look at the source of ./node_modules/actionhero/bin/methods/start to see how the main ActionHero server is implemented for more information.

You can programmatically control an ActionHero server with actionhero.start(params), actionhero.stop() and actionhero.restart()

From within ActionHero itself (actions, initializers, etc), you can use api.commands.start, api.commands.stop, and api.commands.restart to control the server.




Signals

> npx actionhero start cluster --workers=2
info: actionhero >> start cluster
notice:  - STARTING CLUSTER -
notice: pid: 41382
info: starting worker #1
info: worker 41383 (#1) has spawned
info: Worker #1 [41383]: starting
info: Worker #1 [41383]: started
info: starting worker #2
info: worker 41384 (#2) has spawned
info: Worker #2 [41384]: starting
info: Worker #2 [41384]: started

# A new terminal
kill -s TTIN \`cat pids/cluster_pidfile\`

info: worker 41632 (#3) has spawned
info: Worker #3 [41632]: starting
info: Worker #3 [41632]: started

# A new terminal
kill -s KILL \`cat pids/cluster_pidfile\`

warning: Cluster manager quitting
info: Stopping each worker...
info: Worker #1 [41901]: stopping
info: Worker #2 [41904]: stopping
info: Worker #3 [41906]: stopping
info: Worker #3 [41906]: stopped
info: Worker #2 [41904]: stopped
info: Worker #1 [41901]: stopped
alert: worker 41901 (#1) has exited
alert: worker 41904 (#2) has exited
alert: worker 41906 (#3) has exited
info: all workers gone
notice: cluster complete, Bye!





ActionHero is intended to be run on *nix operating systems. The start and start cluster commands provide support for signaling. (There is limited support for some of these commands in windows).

actionhero start


	kill / term / int : Process will attempt to "gracefully" shut down. That is, the worker will close all server connections (possibly sending a shutdown message to clients, depending on server type), stop all task workers, and eventually shut down. This action may take some time to fully complete.


	USR2: Process will restart itself. The process will preform the "graceful shutdown" above, and they restart.




actionhero start cluster

All signals should be sent to the cluster master process. You can still signal the termination of a worker, but the cluster manager will start a new one in its place.


	kill / term / int: Will signal the master to "gracefully terminate" all workers. Master will terminate once all workers have completed


	HUP : Restart all workers.


	USR2 : "Hot reload". Worker will kill off existing workers one-by-one, and start a new worker in their place. This is used for 0-downtime restarts. Keep in mind that for a short while, your server will be running both old and new code while the workers are rolling.


	TTOU: remove one worker


	TTIN: add one worker







Shutting Down

When using actionhero start or actionhero start cluster, when you signal ActionHero to stop via the signals above (or from within your running application via api.commands.stop()), actionhero will attempt to gracefully shutdown. This will include running any initializer's stop() method. This will close any open servers, and attempt to allow any running tasks to complete.

Because things sometimes go wrong, actionhero start and actionhero start cluster also have a "emergency stop" timeout. This defaults to 30 seconds, and is configurable via the ACTIONHERO_SHUTDOWN_TIMEOUT environment variable. Be sure that your tasks and actions can complete within that window, or else raise that shutdown limit.




Windows Specific Notes


	Sometimes ActionHero may require a git-based module (rather than a NPM module). You will need to have git installed. Depending on how you installed git, it may not be available to the node shell. Be sure to have also installed references to git. You can also run node/npm install from the git shell.*   Sometimes, npm will not install the actionhero binary @ /node_modules/.bin/actionhero, but rather it will attempt to create a windows executable and wrapper. You can launch ActionHero directly with ./node_modules/actionhero/bin/actionhero








          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

In ActionHero we have introduced a modular server system which allows you to create your own servers.  Servers should be thought of as any type of listener to remote connections, streams, or event your server.

In ActionHero, the goal of each server is to ingest a specific type of connection and transform each client into a generic connection object which can be operated on by the rest of ActionHero.  To help with this, all servers extend ActionHero.Server and fill in the required methods.

To get started, you can use the actionhero generate server --name=myServer.  This will generate a template server which looks like the below.

Like initializers, the start() and stop() methods will be called when the server is to boot up in ActionHero's lifecycle, but before any clients are permitted into the system.  Here is where you should actually initialize your server (IE: https.createServer.listen, etc).

const ActionHero = require('actionhero')

module.exports = class MyServer extends ActionHero.Server {
  constructor () {
    super()
    this.type = '%%name%%'

    this.attributes = {
      canChat: false,
      logConnections: true,
      logExits: true,
      sendWelcomeMessage: false,
      verbs: []
    }
    // this.config will be set to equal api.config.servers[this.type]
  }

  initialize () {
    this.on('connection', (conection) => {

    })

    this.on('actionComplete', (data) => {

    })
  }

  start () {
    // this.buildConnection (data)
    // this.processAction (connection)
    // this.processFile (connection)
  }

  stop () {

  }

  sendMessage (connection, message, messageCount) {

  }

  sendFile (connection, error, fileStream, mime, length, lastModified) {

  }

  goodbye (connection) {

  }
}








Designing Servers

Your job, as a server designer, is to coerce every client's connection into a connection object.  This is done with the sever.buildConnection helper.  Here is an example from the web server:

server.buildConnection({
  rawConnection: {
    req: req,
    res: res,
    method: method,
    cookies: cookies,
    responseHeaders: responseHeaders,
    responseHttpCode: responseHttpCode,
    parsedURL: parsedURL
  },
  id: randomNumber(),
  remoteAddress: remoteIP,
  remotePort: req.connection.remotePort
}) // will emit "connection"

// Note that connections will have a \`rawConnection\` property.  This is where you should store the actual object(s) returned by your server so that you can use them to communicate back with the client.  Again, an example from the \`web\` server:

server.sendMessage = (connection, message) => {
  cleanHeaders(connection);
  const headers = connection.rawConnection.responseHeaders;
  const responseHttpCode = parseInt(connection.rawConnection.responseHttpCode);
  const stringResponse = String(message)
  connection.rawConnection.res.writeHead(responseHttpCode, headers);
  connection.rawConnection.res.end(stringResponse);
  server.destroyConnection(connection);
}








Options and Attributes

A server defines attributes which define it's behavior.  Variables like canChat are defined here. options are passed in, and come from api.config.servers[serverName].  These can be new variables (like https?) or they can also overwrite the set attributes.
The required attributes are provided in a generated server.




Verbs

allowedVerbs: [
  "quit",
  "exit",
  "paramAdd",
  "paramDelete",
  "paramView",
  "paramsView",
  "paramsDelete",
  "roomChange",
  "roomView",
  "listenToRoom",
  "silenceRoom",
  "detailsView",
  "say"
]





When an incoming message is detected, it is the server's job to build connection.params.  In the web server, this is accomplished by reading GET, POST, and form data.  For websocket clients, that information is expected to be emitted as part of the action's request.  For other clients, like socket, ActionHero provides helpers for long-lasting clients to operate on themselves.  These are called connection verbs.

Clients use verbs to add params to themselves, update the chat room they are in, and more.   The list of verbs currently supported is listed above.

Your server should be smart enough to tell when a client is trying to run an action, request a file, or use a verb.  One of the attributes of each server is allowedVerbs, which defines what verbs a client is allowed to preform.  A simplified example of how the socket server does this:

async parseRequest (connection, line) {
  let words = line.split(' ')
  let verb = words.shift()

  if (verb === 'file') {
    if (words.length > 0) { connection.params.file = words[0] }
    return this.processFile(connection)
  }

  if (this.attributes.verbs.indexOf(verb) >= 0) {
    try {
      let data = await connection.verbs(verb, words)
      return this.sendMessage(connection, {status: 'OK', context: 'response', data: data})
    } catch (error) {
      return this.sendMessage(connection, {error: error, context: 'response'})
    }
  }

  try {
    let requestHash = JSON.parse(line)
    if (requestHash.params !== undefined) {
      connection.params = {}
      for (let v in requestHash.params) {
        connection.params[v] = requestHash.params[v]
      }
    }
    if (requestHash.action) {
      connection.params.action = requestHash.action
    }
  } catch (e) {
    connection.params.action = verb
  }
  connection.error = null
  connection.response = {}
  return this.processAction(connection)
}








Chat

The attribute "canChat" defines if clients of this server can chat.  If clients can chat, they should be allowed to use verbs like "roomChange" and "say".  They will also be sent messages in their room (and rooms they are listening too) automatically.




Sending Responses

All servers need to implement the server.sendMessage = function(connection, message, messageCount) method so ActionHero knows how to talk to each client.  This is likely to make use of connection.rawConnection.  If you are writing a server for a persistent connection, it is likely you will need to respond with messageCount so that the client knows which request your response is about (as they are not always going to get the responses in order).




Sending Files

Servers can optionally implement the server.sendFile = function(connection, error, fileStream, mime, length) method.  This method is responsible for any connection-specific file transport (headers, chinking, encoding, etc). Note that fileStream is a stream which should be pipe'd to the client.




Customizing Servers

//Initializer
 module.exports = {
   startPriority: 1000,
   start: function (api, next) {
     let webServer = api.servers.servers.web
     webServer.connectionCustomMethods = webServer.connectionCustomMethods || {}
     webServer.connectionCustomMethods.requestHeaders = function (connection) {
       return connection.rawConnection.req.headers
     }
   }
 }

 //Action
 module.exports = {
   name: 'logHeaders',
   description 'Log Web Request Headers',
   run: function (api, data, next) {
     let headers = data.connection.requestHeaders()
     api.log('Headers:', 'debug', headers)
     next()
   }
 }





The connection object passed to a server can be customized on a per server basis through the use of the server.connectionCustomMethods hash. The hash can be populated with functions whose signature must match function (connection, ...). Once populated, these functions are curried to always pass connection as the first argument and applied to the data.connection object passed to Actions, and can be accessed via data.connection.functionName(...) within the action or middleware.

In this way, you can create custom methods on your connections.





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

A Telnet or TLS raw connection server.

> telnet localhost 5000

Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.

{"welcome":"Hello! Welcome to the actionhero api","room":"defaultRoom","context":"api"}

detailsView
{"status":"OK","context":"response","data":{"id":"2d68c389-521d-4dc6-b4f1-8292cd6cbde6","remoteIP":"127.0.0.1","remotePort":57393,"params":{},"connectedAt":1368918901456,"room":"defaultRoom","totalActions":0,"pendingActions":0},"messageCount":1}

randomNumber
{"randomNumber":0.4977603426668793,"context":"response","messageCount":2}

cacheTest
{"error":"Error: key is a required parameter for this action","context":"response","messageCount":3}

paramAdd key=myKey
{"status":"OK","context":"response","data":null,"messageCount":4}

paramAdd value=myValue
{"status":"OK","context":"response","data":null,"messageCount":5}
paramsView
{"status":"OK","context":"response","data":{"action":"cacheTest","key":"myKey","value":"myValue"},"messageCount":6}

cacheTest
{"cacheTestResults":{"saveResp":true,"sizeResp":1,"loadResp":{"key":"cacheTest_myKey","value":"myValue","expireTimestamp":1368918936984,"createdAt":1368918931984,"readAt":1368918931995},"deleteResp":true},"context":"response","messageCount":7}

roomAdd default Room
{"status":"OK"}

say defaultRoom hooray!
{"status":"OK","context":"response","data":null,"messageCount":8}





You can access actionhero's methods via a persistent socket connection. The default port for this type of communication is 5000. As this is a persistent connection, socket connections have actionhero's verbs available to them. These verbs are:


	quit disconnect from the session


	paramAdd - save a singe variable to your connection. IE: ‘addParam screenName=evan'


	paramView - returns the details of a single param. IE: ‘viewParam screenName'


	paramDelete - deletes a single param. IE: deleteParam screenName


	paramsView - returns a JSON object of all the params set to this connection


	paramsDelete - deletes all params set to this session


	roomAdd - connect to a room.


	roomLeave - (room) leave the room you are connected to.


	roomView - (room) show you the room you are connected to, and information about the members currently in that room.


	detailsView - show you details about your connection, including your public ID.


	say (room,) message




Please note that any verbs set using the above method will be sticky to the connection and sent for all subsequent requests. Be sure to delete or update your params before your next request.

To help sort out the potential stream of messages a socket user may receive, it is best to understand the "context" of the response. For example, by default all actions set a context of "response" indicating that the message being sent to the client is response to a request they sent (either an action or a chat action like say). Messages sent by a user via the say command have the context of user indicating they came form a user. Messages resulting from data sent to the api (like an action) will have the response context.

Every message returned also contains a messageId, starting from 1, which increments to count a response to each client request.  say messages do not increment messageCount, which allows this count to be used by the client to map responses to queries.

connection.type for a TCP/Socket client is "socket"




Config Options

exports['default'] = {
  servers: {
    socket: function (api) {
      return {
        enabled: (process.env.ENABLE_TCP_SERVER !== undefined),
        // TCP or TLS?
        secure: false,
        // Passed to tls.createServer if secure=true. Should contain SSL certificates
        serverOptions: {},
        // Port or Socket
        port: 5000,
        // Which IP to listen on (use 0.0.0.0 for all)
        bindIP: '0.0.0.0',
        // Enable TCP KeepAlive pings on each connection?
        setKeepAlive: false,
        // Delimiter string for incoming messages
        delimiter: '\n',
        // Maximum incoming message string length in Bytes (use 0 for Infinite)
        maxDataLength: 0
      }
    }
  }
}








TLS Encryption

You can switch your TCP server to use TLS encryption if you desire. Just toggle the settings in /config/servers/socket.js and provide valid certificates. You can test this with the openSSL client rather than telnet openssl s_client -connect 127.0.0.1:5000

Note that if you wish to create a secure (tls) server, you will be required to complete the serverOptions hash with at least a cert and a keyfile:

config.severs.socket = {
  // TCP or TLS?
  secure: true,
  // Passed to tls.createServer if secure=true. Should contain SSL certificates
  serverOptions: {
    key: fs.readFileSync('certs/server-key.pem'),
    cert: fs.readFileSync('certs/server-cert.pem')
  }
};





You can connect like: openssl s_client -connect 127.0.0.1:5000

or from node:

// Connecting over TLS from another node process
const tls = require('tls');
const fs = require('fs');

const options = {
  key: fs.readFileSync('certs/server-key.pem'),
  cert: fs.readFileSync('certs/server-cert.pem')
};

const cleartextStream = tls.connect(5000, options, () => {
  console.log('client connected', cleartextStream.authorized ? 'authorized' : 'unauthorized');
  process.stdin.pipe(cleartextStream);
  process.stdin.resume();
})

cleartextStream.setEncoding('utf8')

cleartextStream.on('data', function(data) {
  console.log(data)
})








Files and Routes

Connections over socket can also use the file action. There is no route for files.


	Errors are returned in the normal way {error: someError} when they exist.


	A successful file transfer will return the raw file data in a single send(). There will be no headers set, nor will the content be JSON.  Plan accordingly!




> telnet localhost 5000
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
{"welcome":"Hello! Welcome to the actionhero api","context":"api"}
$ paramAdd file=simple.html
{"status":"OK","context":"response","messageCount":1}
$ file
<h1>ActionHero</h1>\nI am a flat file being served to you via the API from ./public/simple.html<br />








JSON Parameters

The default method of using actions for TCP clients is to use the methods above to set params to their session and then call actions inline. However, you can also communication via JSON, passing along params specific to each request.


	{"action": "myAction", "params": {"key": "value"}} is also a valid request over TCP







Client Suggestions

The main trick to working with TCP/wire connections directly is to remember that you can have many ‘pending' requests at the same time. Also, the order in which you receive responses back can be variable. if you request slowAction and then fastAction, it's fairly likely that you will get a response to fastAction first.

Note that only requests the client makes increment the messageCount, but broadcasts do not (the say command, etc)

The actionhero Node Client Library [https://github.com/actionhero/actionhero-node-client] uses TCP/TLS connections, and makes use of actionhero's messageCount parameter to keep track of requests, and keeps response callbacks for actions in a pending queue. For example:

const path = require('path')
const ActionheroNodeClient = require(path.join(__dirname, 'lib', 'client.js'))

async function main () {
  const client = new ActionheroNodeClient()

  client.on('say', (message) => {
    console.log(' > SAY: ' + message.message + ' | from: ' + message.from)
  })

  client.on('welcome', (welcome) => {
    console.log('WELCOME: ' + welcome)
  })

  client.on('error', (error) => {
    console.log('ERROR: ' + error)
  })

  client.on('end', () => {
    console.log('Connection Ended')
  })

  client.on('timeout', (request, caller) => {
    console.log(request + ' timed out')
  })

  await client.connect({host: '127.0.0.1', port: '5000'})

  // get details about myself
  console.log('My Details: ', client.details)

  // try an action
  const params = { key: 'mykey', value: 'myValue' }
  let {error, data, delta} = await client.actionWithParams('cacheTest', params)
  if (error) { throw error }
  console.log('cacheTest action response: ', data)
  console.log(' ~ request duration: ', delta)

  // join a chat room and talk
  await client.roomAdd('defaultRoom')
  await client.say('defaultRoom', 'Hello from the actionheroClient')
  await client.roomLeave('defaultRoom')

  // leave
  await client.disconnect()
  console.log('all done!')
}

main()









          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

Tasks are background jobs meant to be run separately from a client's request. They can be started by an action or by the server itself. With ActionHero, there is no need to run a separate daemon to process these jobs. ActionHero uses the node-resque [https://github.com/taskrabbit/node-resque] package to store and process tasks in a way compatible with the resque [https://github.com/resque/resque] ecosystem.

There are 3 types of tasks ActionHero can process: normal, delayed, and periodic.


	normal tasks are enqueued and processed one-by-one by the task TaskProcessors


	delayed tasks are enqueued in a special delayed queue to only be processed at some time in the future (defined either by a timestamp in ms or milliseconds-from-now)


	periodic tasks are like delayed tasks, but they run on a set frequency (e.g. every 5 minutes).


	Periodic tasks can take no input parameters.











Enqueing Tasks

Here are examples of the 3 ways to programmatically enqueue a task:

// Enqueue the task now, and process it ASAP
// api.tasks.enqueue(nameOfTask, args, queue)
await api.tasks.enqueue("sendWelcomeEmail", {to: 'evan@evantahler.com'}, 'default')

// Enqueue the task now, and process it once \`timestamp\` has arrived
// api.tasks.enqueueAt(timestamp, nameOfTask, args, queue)
await api.tasks.enqueueAt(1234556, "sendWelcomeEmail", {to: 'evan@evantahler.com'}, 'default')

// Enqueue the task now, and process it once \`delay\` (ms) has passed
// api.tasks.enqueueIn(delay, nameOfTask, args, queue)
await api.tasks.enqueueIn(10000, "sendWelcomeEmail", {to: 'evan@evantahler.com'}, 'default')





"sendWelcomeEmail" should be a task defined in the project, and {to: 'evan@evantahler.com'} are arguments to that task. This task will be processed by TaskProcessors assigned to the "default" queue.

You can also enqueue tasks to be run at some time in the future (timestamp is in ms): enqueueAt asks for a timestamp (in ms) to run at, and enqueueIn asks for the number of ms from now to run.

The final type of task, periodic tasks, are defined with a task.frequency of greater than 0, and are loaded in by ActionHero when it boots. You cannot modify these tasks once the server is running.




Processing Tasks

// From /config/tasks.js:

exports.default = {
  tasks: function(api){
    return {
      // Should this node run a scheduler to promote delayed tasks?
      scheduler: false,
      // what queues should the TaskProcessors work?
      queues: ['*'],
      // Logging levels of task workers
      workerLogging : {
        failure   : 'error', // task failure
        success   : 'info',  // task success
        start     : 'info',
        end       : 'info',
        cleaning_worker : 'info',
        poll      : 'debug',
        job       : 'debug',
        pause     : 'debug',
        internalError : 'error',
        multiWorkerAction : 'debug'
      },
      // Logging levels of the task scheduler
      schedulerLogging : {
        start     : 'info',
        end       : 'info',
        poll      : 'debug',
        enqueue   : 'debug',
        reEnqueue : 'debug',
        working_timestamp : 'debug',
        transferred_job   : 'debug'
      },
      // how long to sleep between jobs / scheduler checks
      timeout: 5000,
      // at minimum, how many parallel taskProcessors should this node spawn?
      // (have number > 0 to enable, and < 1 to disable)
      minTaskProcessors: 0,
      // at maximum, how many parallel taskProcessors should this node spawn?
      maxTaskProcessors: 0,
      // how often should we check the event loop to spawn more TaskProcessors?
      checkTimeout: 500,
      // how many ms would constitue an event loop delay to halt TaskProcessors spawning?
      maxEventLoopDelay: 5,
      // Customize Resque primitives, replace null with required replacement.
      resque_overrides: {
        queue: null,
        multiWorker: null,
        scheduler: null
      }
    }
  }
}





To work these tasks, you need to run ActionHero with at least one taskProcessor. TaskProcessors run in-line with the rest of your server and process jobs. This is controlled by settings in /config/tasks.js [https://github.com/actionhero/actionhero/blob/master/config/tasks.js].

If you are enqueuing delayed or periodic tasks, you also need to enable the scheduler. This is a part of ActionHero that will periodically check the delayed queues for jobs that are ready to work now, and move them to the normal queues when the time comes.

Because node and ActionHero are asynchronous, we can process more than one job at a time. However, if the jobs we are processing are CPU-intensive, we want to limit how many we are working on at one time. To do this, we tell ActionHero to run somewhere between minTaskProcessors and maxTaskProcessors and check every so often if the server could be working more or less jobs at a time. Depending on the response characteristics you want for your server, you can modify these values.

In production, it is best to set up some ActionHero servers that only handle requests from clients (that is, servers with no TaskProcessors) and others that handle no requests, and only process jobs (that is, no servers, many TaskProcessors).

As you noticed above, when you enqueue a task, you tell it which queue to be enqueued within. This is so you can separate load or priority. For example, you might have a high priority queue which does jobs like "sendPushMessage" and a low priority queue which does a task like "cleanupCache". You tell the taskProcessors which jobs to work, and in which priority. For the example above, you would ensure that all high jobs happen before all low jobs by setting: api.config.tasks.queues = ['high', 'low']. You could also configure more nodes to work on the high queue than the low queue, thus further ensuring that high priority jobs are processed faster and sooner than low priority jobs.




Creating A Task

An few ways to define a task:

// define a single task in a file
const {api, Task} = require('actionhero')

module.exports = class SendWelcomeMessage extends Task {
  constructor () {
    super()
    this.name = 'SendWelcomeEmail'
    this.description = 'I send the welcome email to new users'
    this.frequency = 0
    this.queue = 'high'
    this.middleware = []
  }

  async run (data) {
    await api.sendWelcomeEamail({address: data.email})
    return true
  }
}





You can also define more than one task in a file, exporting each with a separate exports directive, ie:.

exports.SayHello = class SayHello extends Task {
  constructor () {
    super()
    this.name = 'sayHello'
    this.description = 'I say hello'
    this.frequency = 1000
    this.queue = 'low'
    this.middleware = []
  }

  async run () { api.log("hello") }
}

exports.SayGoodbye = class SayGoodbye extends Task {
  constructor () {
    super()
    this.name = 'sayGoodbye'
    this.description = 'I say goodbye'
    this.frequency = 2000
    this.queue = 'low'
    this.middleware = []
  }

  async run () { api.log("goodbye") }
}





Output of the above:

# The output of running the last 2 tasks would be:

2013-11-28 15:21:56 - debug: resque scheduler working timestamp 1385680913
2013-11-28 15:21:56 - debug: resque scheduler enquing job 1385680913 class=sayHello, queue=default,
2013-11-28 15:21:56 - debug: resque scheduler working timestamp 1385680914
2013-11-28 15:21:56 - debug: resque scheduler enquing job 1385680914 class=sayGoodbye, queue=default,
2013-11-28 15:21:56 - debug: resque worker #1 working job default class=sayHello, queue=default,
2013-11-28 15:21:56 - info: hello
2013-11-28 15:21:56 - debug: re-enqueued reccurent job sayHello
2013-11-28 15:21:56 - debug: resque worker #1 working job default class=sayGoodbye, queue=default,
2013-11-28 15:21:56 - info: goodbye
2013-11-28 15:21:56 - debug: re-enqueued reccurent job sayGoodbye





You can create you own tasks by placing them in a ./tasks/ directory at the root of your application. You can use the generator actionhero generate task --name=myTask. Like actions, all tasks have some required metadata:


	task.name: The unique name of your task


	task.description: a description


	task.queue: the default queue to run this task within (can be overwritten when enqueued)


	task.frequency: In milliseconds, how often should I run?. A frequency of > 0 denotes this task as periodic and ActionHero will automatically enqueued when the server boots. Only one instance of a periodic task will be enqueued within the cluster at a time, regardless of how many ActionHero nodes are connected.


	task.middleware: middleware modify how your tasks are enqueued. For example, if you use the queue-lock plugin, only one instance of any job (with similar arguments) can be enqueued at a time. You can learn more about middleware here




task.run contains the actual work that the task does. It takes the following arguments:


	params: An array of parameters that the task was enqueued with. This is whatever was passed as the second argument to api.tasks.enqueue.




Throwing an error will stop the task, and log it as a failure in resque, which you can inspect via the various tasks methods.  If a periodic task throws an error, it will not be run again.




Job Schedules

You may want to schedule jobs every minute/hour/day, like a distributed CRON job. There are a number of excellent node packages to help you with this, like node-schedule [https://github.com/tejasmanohar/node-schedule] and node-cron [https://github.com/ncb000gt/node-cron]. ActionHero exposes node-resque's [https://github.com/taskrabbit/node-resque] scheduler to you so you can use the scheduler package of your choice.

Assuming you are running ActionHero across multiple machines, you will need to ensure that only one of your processes is actually scheduling the jobs. To help you with this, you can inspect which of the scheduler processes is correctly acting as master, and flag only the master scheduler process to run the schedule. An initializer for this would look like:

// file: initializers/node_schedule.js

const schedule = require('node-schedule')
const {api, Initializer} = require('node-schedule')

module.exports = class Scheduler extends Initializer {
  constructor () {
    super()
    this.name = 'scheduler'
  }

  initialize (api, next) {
    api.scheduledJobs = [];
  },

  start () {
    // do this job every 10 seconds, cron style
    const job = schedule.scheduleJob('0,10,20,30,40,50 * * * * *', () => {
      // we want to ensure that only one instance of this job is scheduled in our environment at once,
      // no matter how many schedulers we have running
      if(api.resque.scheduler && api.resque.scheduler.master){
        await api.tasks.enqueue('sayHello', {time: new Date().toString()}, 'default')
      }
    })

    api.scheduledJobs.push(job)
  },

  stop: () => {
    api.scheduledJobs.forEach((job) => { job.cancel() })
  }
};





Be sure to have the scheduler enabled on at least one of your ActionHero servers!




Failed Job Management

Sometimes a worker crashes is a severe way, and it doesn't get the time/chance to notify redis that it is leaving the pool (this happens all the time on PAAS providers like Heroku). When this happens, you will not only need to extract the job from the now-zombie worker's "working on" status, but also remove the stuck worker. To aid you in these edge cases, api.tasks.cleanOldWorkers(age) is available.

Because there are no 'heartbeats' in resque, it is impossible for the application to know if a worker has been working on a long job or it is dead. You are required to provide an "age" for how long a worker has been "working", and all those older than that age will be removed, and the job they are working on moved to the error queue (where you can then use api.tasks.retryAndRemoveFailed) to re-enqueue the job.

You can handle this with an own initializer and the following logic:

const removeStuckWorkersOlderThan = 10000; // 10000ms
api.log(`removing stuck workers solder than ${removeStuckWorkersOlderThan}ms`, 'info');
const result = api.tasks.cleanOldWorkers(removeStuckWorkersOlderThan)
if(Object.keys(result).length > 0){
  api.log('removed stuck workers with errors: ', 'info', result);
}








Notes

Note that the frequency, enqueueIn and enqueueAt times are when a task is allowed to run, not when it will run. TaskProcessors will work tasks in a first-in-first-out manner. TaskProcessors also sleep when there is no work to do, and will take some time (default 5 seconds) to wake up and check for more work to do.

Remember that each ActionHero server uses one thread and one event loop, so that if you have computationally intensive task (like computing Fibonacci numbers), this will block tasks, actions, and clients from working. However, if your tasks are meant to communicate with external services (reading from a database, sending an email, etc), then these are perfect candidates to be run simultaneously as the single thread can work on other things while waiting for these operations to complete.

If you are running a single ActionHero server, all tasks will be run locally. As you add more servers, the work will be split evenly across all nodes. It is very likely that your job will be run on different nodes each time.





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

ActionHero provides test helpers so that you may try your actions and tasks within a headless environment. We do this by including a specHelper initializer which creates a server, testServer when running within the test environment. Via the testServer, you can easily call actions or tasks without making a real request.

We have chosen mocha [http://mochajs.org/] as our test framework and chai [http://chaijs.com/] as our assertion tool which are included as dependencies within all new projects generated with actionhero generate. We also use cross-env to set NODE_ENV in a way that works for all operating systems, including Windows. You do not need to use these testing tools, but an example will be provided which makes use of them.

You also don't need to use these test helpers, and you may want to make a real http or websocket request to test something specific. If this is the case, you can check out how ActionHero tests its own servers [https://github.com/actionhero/actionhero/tree/master/test/servers] for examples.




Getting Started

// package.json from a new actionhero project with \`mocha\` and \`chai\` included
{
  "author"      : "YOU <YOU@example.com>",
  "name"        : "my_actionhero_project",
  "description" : "my actionhero project",
  "version"     : "0.1.0",
  "engines"     : {
    "node": ">=8.0.0"
  },
  "dependencies" : {
    "actionhero" : "^14.0.0",
    "ws"         : "latest"
  },
  "devDependencies" : {
    "cross-env": "latest",
    "mocha"  : "latest",
    "chai" : "latest"
  },
  "scripts" : {
    "help"         : "actionhero help",
    "start"        : "actionhero start",
    "actionhero"   : "actionhero",
    "start cluster": "actionhero start cluster",
    "test"         : "cross-env NODE_ENV=test mocha"
  }
}





To run a mocha test suite, you invoke the mocha binary, ./node_modules/.bin/mocha or npx mocha. This will tell mocha to look in your ./test folder and run any tests that it can find. There are ways to change the test folder location, only run specific tests, change the reporting format and more which you can learn about on Mocha's website [http://mochajs.org/]. We assume that you have mocha (and chai) installed to your project by listing it in your package.json. If you used actionHero generate to create your project, this should already be configured for you.

The majority of the time, you'll be testing actions and other methods you have written, so you'll need to "run" an actionhero server as part of your test suite. Many times you'll want to have ActionHero behave in a slightly unique way while testing (perhaps connect to a special database, don't log, etc). To do this, you can change the behavior of the config files for the test environment. Here is how we tell ActionHero not to write any logs when testing [https://github.com/actionhero/actionhero/blob/master/config/logger.js#L48-L54]. Note the test-specific configuration overrides the defaults. To ensure that ActionHero boots with the test environment loaded, the test command you run should explicitly do this, AKA: NODE_ENV=test npx mocha. You can set this in as the test script in your package.json [https://github.com/actionhero/actionhero/blob/master/package.json#L63] so you can simplify the running of tests with just npm test.

ActionHero comes with a specHelper to make it easier to test tasks and actions. This specHelper is a special server which can check things without needing to make an HTTP, websocket, etc request. If you need to check the true behavior of a server (perhaps how the router works for an HTTP request), you should make a real HTTP request in your test suite, using something like the request [https://github.com/request/request] library (example [https://github.com/actionhero/actionhero/blob/master/test/servers/web.js#L178-L184]).




Example Test

Say you had an action that was supposed to respond with a randomNumber, and you wanted to write a test for it.

const chai = require('chai')
const dirtyChai = require('dirty-chai')
const expect = chai.expect
chai.use(dirtyChai)

const ActionHero = require('actionhero')
const actionhero = new ActionHero.Process()
let api

describe('Action: RandomNumber', () => {
  before(async () => { api = await actionhero.start() })
  after(async () => { await actionhero.stop() })

  let firstNumber = null
  it('generates random numbers', async () => {
    let {randomNumber} = await api.specHelper.runAction('randomNumber')
    expect(randomNumber).to.be.at.least(0)
    expect(randomNumber).to.be.at.most(1)
    firstNumber = randomNumber
  })

  it('is unique / random', async () => {
    let {randomNumber} = await api.specHelper.runAction('randomNumber')
    expect(randomNumber).to.be.at.least(0)
    expect(randomNumber).to.be.at.most(1)
    expect(randomNumber).not.to.equal(firstNumber)
  })
})





More details on the specHelper methods can be found here

If you want to see fuller example of how to create an integration test within ActionHero, please check out the tutorial [https://github.com/actionhero/actionhero-tutorial#testing]




Notes

Be sure to run your tests in the test environment, setting the shell's env with NODE_ENV=test. You can alternatively set this explicitly in your tests with process.env.NODE_ENV = 'test'

If you do not want the specHelper actions to include metadata (data.response.serverInformation, data.response.requesterInformation, and data.response.messageCount) from the server, you can configure api.specHelper.returnMetadata = false in your tests.





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

Upgrading big ActionHero projects to a new major might require some effort. Every ActionHero version has it's own specific project files which you generate using actionhero generate command.

One of the ways to upgrade your project is to generate a new project using the latest ActionHero framework (npm install actionhero && npx actionhero generate). Using that as your starting point you can then carefully copy all your configs, initializers, servers, tasks, actions, and other custom code from your old project, making sure that you are at the same working state as before. It's a good practice to make tests for your actions (or any other component) before you plan to upgrade your ActionHero project.

With good test coverage you can make sure that you have successfully upgraded your project.

ActionHero follows semantic versioning [http://semver.org/]. This means that a minor change is a right-most number. A new feature added is the middle number, and a breaking change is the left number. You should expect something in your application to need to be changed if you upgrade a major version.




Upgrading from v17 to v18

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v18.0.0]

Breaking Changes and How to Overcome Them:

There are many changes to the APIs actionhero exposes.  You can read up on the new syntax on our new documentation website, docs.actionherojs.com [https://docs.actionherojs.com]


	Node.js version


	Node.js v8 and higher is now required.  You must update your projects.






	Actions


	Actions are now ES6 classes, which extend require('actionhero').Action.


	The run method only has one argument now, data and becomes a async method.  api can be required globally to your file.








const {Action, api} = require('actionhero')

module.exports = class MyAction extends Action {
 constructor () {
   super()
   this.name = 'randomNumber'
   this.description = 'I am an API method which will generate a random number'
   this.outputExample = {randomNumber: 0.1234}
 }

 async run (data) {
   data.response.randomNumber = Math.random()
 }
}






	Tasks


	Tasks are now ES6 classes, which extend require('actionhero').Task.


	The run method only has one argument now, data and becomes a async method.  api can be required globally to your file.








const {api, Task} = require('actionhero')

module.exports = class SendWelcomeMessage extends Task {
  constructor () {
    super()
    this.name = 'SendWelcomeEmail'
    this.description = 'I send the welcome email to new users'
    this.frequency = 0
    this.queue = 'high'
    this.middleware = []
  }

  async run (data) {
    await api.sendWelcomeEamail({address: data.email})
    return true
  }
}






	Initializers


	Initializers are now ES6 classes, which extend require('actionhero').Initializer.


	The initialize, start, and stop methods now have no arguments and become a async methods.  api can be required globally to your file.








const {ActionHero, api} = require('actionhero')

module.exports = class StuffInit extends ActionHero.Initializer {
  constructor () {
    super()
    this.name = 'StuffInit'
    this.loadPriority = 1000
    this.startPriority = 1000
    this.stopPriority = 1000
  }

  async initialize () {
    api.StuffInit = {}
    api.StuffInit.doAThing = async () => {}
    api.StuffInit.stopStuff = async () => {}
    api.log('I initialized', 'debug', this.name)
  }

  async start () {
    await api.StuffInit.startStuff()
    api.log('I started', 'debug', this.name)
  }

  async stop () {
    await api.StuffInit.stopStuff()
    api.log('I stopped', 'debug', this.name)
  }
}






	Servers


	Servers are now ES6 classes, which extend require('actionhero').Server.


	The initialize, start, and stop methods now have no arguments and become a async methods.  api can be required globally to your file.








const ActionHero = require('actionhero')

module.exports = class MyServer extends ActionHero.Server {
  constructor () {
    super()
    this.type = '%%name%%'

    this.attributes = {
      canChat: false,
      logConnections: true,
      logExits: true,
      sendWelcomeMessage: false,
      verbs: []
    }
    // this.config will be set to equal api.config.servers[this.type]
  }

  initialize () {
    this.on('connection', (conection) => {

    })

    this.on('actionComplete', (data) => {

    })
  }

  start () {
    // this.buildConnection (data)
    // this.processAction (connection)
    // this.processFile (connection)
  }

  stop () {

  }

  sendMessage (connection, message, messageCount) {

  }

  sendFile (connection, error, fileStream, mime, length, lastModified) {

  }

  goodbye (connection) {

  }
}






	CLI Commands


	CLI Commands are now ES6 classes, which extend require('actionhero').CLI.


	The run method now has one argument, data and becomes a async method.  api can be required globally to your file.








const {api, CLI} = require('actionhero')

module.exports = class RedisKeys extends CLI {
  constructor () {
    super()
    this.name = 'redis keys'
    this.description = 'I list all the keys in redis'
    this.example = 'actionhero keys --prefix actionhero'
  }

  inputs () {
    return {
      prefix: {
        requried: true,
        default: 'actionhero',
        note: 'the redis prefix for searching keys'
      }
    }
  }

  async run ({params}) => {
    let keys = await api.redis.clients.client.keys(params.prefix)
    api.log('Found ' + keys.length + 'keys:')
    keys.forEach((k) => { api.log(k) })
  }
}






	Cache


	All methods which used to return a callback are now async methods which, when awaited, return a result and throw errors






	Tasks


	All methods which used to return a callback are now async methods which, when awaited, return a result and throw errors






	Chat


	All methods which used to return a callback are now async methods which, when awaited, return a result and throw errors






	SpecHelper


	All methods which used to return a callback are now async methods which, when awaited, return a result and throw errors








const chai = require('chai')
const dirtyChai = require('dirty-chai')
const expect = chai.expect
chai.use(dirtyChai)

const path = require('path')
const ActionHero = require('actionhero')
const actionhero = new ActionHero.Process()
let api

describe('Action: RandomNumber', () => {
  before(async () => { api = await actionhero.start() })
  after(async () => { await actionhero.stop() })

  let firstNumber = null
  it('generates random numbers', async () => {
    let {randomNumber} = await api.specHelper.runAction('randomNumber')
    expect(randomNumber).to.be.at.least(0)
    expect(randomNumber).to.be.at.most(1)
    firstNumber = randomNumber
  })

  it('is unique / random', async () => {
    let {randomNumber} = await api.specHelper.runAction('randomNumber')
    expect(randomNumber).to.be.at.least(0)
    expect(randomNumber).to.be.at.most(1)
    expect(randomNumber).not.to.equal(firstNumber)
  })
})






	Utils


	api.utils.recursiveDirectoryGlob has been removed in favor of the glob package [https://github.com/isaacs/node-glob]. Use this instead.


	All methods which used to return a callback are now async methods which, when awaited, return a result and throw errors






	Plugins


	ActionHero no longer uses linkfiles to find plugins.  If you have any in a plugins directory in your actions, tasks, config, or public folders, delete them.


	Plugins now need to be defined explicitly in a new ./config/plugins.js config file.  You should create one per the example [https://github.com/actionhero/actionhero/blob/master/config/plugins.js]


	Removed actionhero link and actionhero unlink per the above.


	Added actionhero generate plugin, a helper which you can use in an empty directory which will create a template plugin project


	Testing plugins is now simpler.  Read more about this on docs.actionherojs.com [https://docs.actionherojs.com/tutorial-plugins.html]






	Clients


	ActionheroClient (the included client library for browser websocket clients) as been named a more clear ActionheroWebsocketClient to avoid ambiguity.


	The node sever-sever package has been renamed actionhero-node-client to help clear up any confusion.











Upgrading from v16 to v17

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v17.0.0]

Breaking Changes and How to Overcome Them:


	Localization (i18n)


	In ./config/i18n.js be sure to enable objectNotation, or else the new locale file will be gibberish to ActionHero


	As of this release, ActionHero no longer localizes its log messages. This is done to simplify and speed up the logger methods. There is not mitigation path here without overwriting the api.log() method.


	Any use of % interpolation should be removed from your logger strings. Favor native JS string templates.


	ActionHero now ships with locale files by default.


	You will need to acquire the default locale file [https://github.com/actionhero/actionhero/blob/master/locales/en.json] and copy it into ./locales/en.json within your project.


	The error reporters have all been changed to use these new locale file and mustache-style syntax. Update your from the default errors file [https://github.com/actionhero/actionhero/blob/master/config/errors.js]


	The welcomeMessage and goodbyeMessage are removed from the config files and ActionHero now refrences the locale files for these strings. Update yours accodingly.


	utils


	api.utils.recursiveDirectoryGlob has been removed in favor of the glob package [https://github.com/isaacs/node-glob]. Use this instead.







Upgrading from v15 to v16

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v16.0.0]

Breaking Changes and How to Overcome Them:

The only breaking changes are related to the capilization of internal methods:


	api.Connecton() rather than api.connection()


	api.GenericServer() rather than api.genericServer()


	api.ActionProcessor() rather than api.actionProcessor()


	require('actionhero') not require('actionhero').actionheroPrototype should you be using ActionHero programatically.







Upgrading from v14 to v15

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v15.0.0]

Breaking Changes and How to Overcome Them:

\`actionhero generateAction --name=[name]\`      -> \`actionhero generate action --name=[name]\`
\`actionhero generateInitializer --name=[name]\` -> \`actionhero generate initializer --name=[name]\`
\`actionhero generateServer --name=[name]\`      -> \`actionhero generate server --name=[name]\`
\`actionhero generateTask --name=[name]\`        -> \`actionhero generate task --name=[name]\`






	The ActionHero binary has had it's commands changed.


	Any deployment or automation tools you use will need to be updated accordingly.






	Tasks now use middleware instead of plugins.


	You will need to convert all uses of task plugins to task middleware.











Upgrading from v13 to v14

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v14.0.0]

Breaking Changes and How to Overcome Them:


	Redis Client Configurations have changed drastically. This allows for greater configuration, but at a complexity cost.


	The easiest way to upgrade your config/redis.js is to take if from the master branch [https://github.com/actionhero/actionhero/blob/master/config/redis.js] directly and re-apply your configuration.


	Move api.config.redis.channel to api.config.general.channel


	Move api.config.redis. rpcTimeout to api.config.general.rpcTimeout


	Throughout the code, use api.config.redis.client rather than api.redis.client











Upgrading from v12 to v13

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v13.0.0]

Breaking Changes and How to Overcome Them:


	Pluggins


	config/plugins.js is removed. Delete yours.


	Use the new binary command, actionhero link --name=NameOfPlugin to link your plugins in the new method.


	Linking plugins will likley create new config files you may need to customize.






	Locales


	This release introduced Locales. You will need the new locale config file. The easiest way to upgrade your config/i18n.js is to take if from the master branch [https://github.com/actionhero/actionhero/blob/master/config/i18n.js].


	Ensure that api.config.i18n.updateFiles is true so that your locale files can be generated for the first time.






	Errors


	config/errors.js has been completely redone to take advantage of connection.localize. The easiest way to upgrade your config/errors.js is to take if from the master branch [https://github.com/actionhero/actionhero/blob/master/config/errors.js].






	Grunt Removed


	Grunt is removed from the project. The old ActionHero grunt commands have been moved into the ActionHero binary.






	Redis configuration


	package is a reserved keyword in JavaScript. We now use the key pkg in the redis config.











Upgrading from v11 to v12

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v12.0.0]

Breaking Changes and How to Overcome Them:


	Redis configuration


	Switch from using the redis npm pacakge to ioredis. Change this in your package.json.






	ioredis handles passwords slightly differently. Read the ioredis [https://github.com/luin/ioredis] documentation to learn more.


	Stats Removed


	The api.stats subsection has been removed from actionhero


	If you need the stats subsection, you can get get it via plugin [https://github.com/actionhero/ah-stats-plugin]











Upgrading from v10 to v11

Full Release Notes: GitHub [https://github.com/actionhero/actionhero/releases/tag/v11.0.0]

Breaking Changes and How to Overcome Them:


	Action Syntax changed


	run: function(api, data, next){ data.response.randomNumber = Math.random(); next(error); }


	Where data contains:


	data = { connection: connection, action: 'randomNumber', toProcess: true, toRender: true, messageCount: 123, params: { action: 'randomNumber', apiVersion: 1 }, actionStartTime: 123, response: {}, }


	You will need to change all of your actions to use data.connection rather than connection directly.


	You will need to change all of your actions to use data.response rather than connection.response directly.






	Middleware syntax has changed to match action's data pattern. You will need to change your middleware accordingly.


	Removed connection._originalConnection.


	Websockets:


	The params of websocket connections should NOT be sticky. All actions will start with connection.params = {}. If you rely on the old behavior, you will need to change your client code.






	Action Processor:


	Removed duplicate callback prevention in ActionProcessor. This belongs on the user/implementer to handle.












          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

The web server exposes actions and files over http or https. You can visit the API in a browser, Curl, etc. {url}?action=actionName or {url}/api/{actionName} is how you would access an action. For example, using the default ports in /config/servers/web.js you could reach the status action with both http://127.0.0.1:8080/status or http://127.0.0.1:8080/?action=status

HTTP responses are always JSON and follow the following format:

{
  hello: "world",
  serverInformation: {
    serverName: "actionhero API",
    apiVersion: 1,
    requestDuration: 14
  },
  requestorInformation: {
    remoteAddress: "127.0.0.1",
    RequestsRemaining: 989,
    recievedParams: {
      action: ""
    }
  }
}








Full HTTP Example

> curl 'localhost:8080/api/status' -v | python -mjson.tool
* About to connect() to localhost port 8080 (#0)
*   Trying 127.0.0.1...
* connected
* Connected to localhost (127.0.0.1) port 8080 (#0)
> GET /api/status HTTP/1.1
> User-Agent: curl/7.24.0 (x86_64-apple-darwin12.0) libcurl/7.24.0 OpenSSL/0.9.8r zlib/1.2.5
> Host: localhost:8080
> Accept: */*
>
< HTTP/1.1 200 OK
< Content-Type: application/json
< X-Powered-By: actionhero API
< Date: Sun, 29 Jul 2012 23:25:53 GMT
< Connection: keep-alive
< Transfer-Encoding: chunked
<
{ [data not shown]
100   741    0   741    0     0   177k      0 --:--:-- --:--:-- --:--:--  361k
* Connection #0 to host localhost left intact
* Closing connection #0
{
    "requestorInformation": {
        "recievedParams": {
            "action": "status",
        },
        "remoteAddress": "127.0.0.1"
    },
    "serverInformation": {
        "apiVersion": "3.0.0",
        "currentTime": 1343604353551,
        "requestDuration": 1,
        "serverName": "actionhero API"
    },
    "stats":
        "id": "10.0.1.12:8080:4443:5000",
        "uptimeSeconds": 34.163
    }
}






	You can provide the ?callback=myFunc param to initiate a JSONp response which will wrap the returned JSON in your callback function. The mime type of the response will change from JSON to Javascript.


	If everything went OK with your request, no error attribute will be set on the response, otherwise, you should see either a string or hash error response within your action


	To build the response for "hello" above, the action would have set data.response.hello = 'world' in an action.







Config Options

/config/servers/web.js contains the settings for the web server. The relevant options are:

exports['default'] = {
  servers: {
    web: function (api) {
      return {
        enabled: true,
        // HTTP or HTTPS?
        secure: false,
        // Passed to https.createServer if secure=true. Should contain SSL certificates
        serverOptions: {},
        // Should we redirect all traffic to the first host in this array if the request header doesn't match?
        // i.e.: [ 'https://www.site.com' ]
        allowedRequestHosts: process.env.ALLOWED_HOSTS ? process.env.ALLOWED_HOSTS.split(',') : [],
        // Port or Socket Path
        port: process.env.PORT || 8080,
        // Which IP to listen on (use '0.0.0.0' for all; '::' for all on ipv4 and ipv6)
        // Set to \`null\` when listening to socket
        bindIP: '0.0.0.0',
        // Any additional headers you want actionhero to respond with
        httpHeaders: {
          'X-Powered-By': api.config.general.serverName,
          'Access-Control-Allow-Origin': '*',
          'Access-Control-Allow-Methods': 'HEAD, GET, POST, PUT, PATCH, DELETE, OPTIONS, TRACE',
          'Access-Control-Allow-Headers': 'Content-Type'
        },
        // Route that actions will be served from; secondary route against this route will be treated as actions,
        //  IE: /api/?action=test == /api/test/
        urlPathForActions: 'api',
        // Route that static files will be served from;
        //  path (relative to your project root) to serve static content from
        //  set to \`null\` to disable the file server entirely
        urlPathForFiles: 'public',
        // When visiting the root URL, should visitors see 'api' or 'file'?
        //  Visitors can always visit /api and /public as normal
        rootEndpointType: 'file',
        // simple routing also adds an 'all' route which matches /api/:action for all actions
        simpleRouting: true,
        // queryRouting allows an action to be defined via a URL param, ie: /api?action=:action
        queryRouting: true,
        // The cache or (if etags are enabled) next-revalidation time to be returned for all flat files served from /public; defined in seconds
        flatFileCacheDuration: 60,
        // Add an etag header to requested flat files which acts as fingerprint that changes when the file is updated;
        // Client will revalidate the fingerprint at latest after flatFileCacheDuration and reload it if the etag (and therfore the file) changed
        // or continue to use the cached file if it's still valid
        enableEtag: true,
        // How many times should we try to boot the server?
        // This might happen if the port is in use by another process or the socketfile is claimed
        bootAttempts: 1,
        // Settings for determining the id of an http(s) request (browser-fingerprint)
        fingerprintOptions: {
          cookieKey: 'sessionID',
          toSetCookie: true,
          onlyStaticElements: false,
          settings: {
            path: '/',
            expires: 3600000
          }
        },
        // Options to be applied to incoming file uploads.
        //  More options and details at https://github.com/felixge/node-formidable
        formOptions: {
          uploadDir: os.tmpdir(),
          keepExtensions: false,
          maxFieldsSize: 1024 * 1024 * 100
        },
        // Should we pad JSON responses with whitespace to make them more human-readable?
        // set to null to disable
        padding: 2,
        // Options to configure metadata in responses
        metadataOptions: {
          serverInformation: true,
          requesterInformation: true
        },
        // When true, returnErrorCodes will modify the response header for http(s) clients if connection.error is not null.
        // You can also set connection.rawConnection.responseHttpCode to specify a code per request.
        returnErrorCodes: true,
        // should this node server attempt to gzip responses if the client can accept them?
        // this will slow down the performance of actionhero, and if you need this funcionality, it is recommended that you do this upstream with nginx or your load balancer
        compress: false,
        // options to pass to the query parser
        // learn more about the options @ https://github.com/hapijs/qs
        queryParseOptions: {}
      }
    }
  }
}





Note that if you wish to create a secure (https) server, you will be required to complete the serverOptions hash with at least a cert and a keyfile:

config.server.web.serverOptions: {
  key: fs.readFileSync('certs/server-key.pem'),
  cert: fs.readFileSync('certs/server-cert.pem')
}








The Connection Object

{ id: '3e55b464fd34708eba26f609f44481a120e094a8-a6dfb60b-9562-4cc0-9d92-bc6cc1b622ba',
  connectedAt: 1447554153233,
  type: 'web',
  rawConnection:
   {
     req: {},
     res: {},
     params: { query: {} },
     method: 'GET',
     cookies: {},
     responseHeaders: [ [Object], [Object], [Object], [Object], [Object], [Object] ],
     responseHttpCode: 200,
     parsedURL:
      Url {},
  remotePort: 57259,
  remoteIP: '127.0.0.1',
  error: null,
  fingerprint: '3e55b464fd34708eba26f609f44481a120e094a8',
  rooms: [],
  params: { action: 'randomNumber', apiVersion: 1 },
  pendingActions: 1,
  totalActions: 1,
  messageCount: 0,
  canChat: false,
  sendMessage: [Function],
  sendFile: [Function]
}





when inspecting data.connection in actions or action middleware from web client, a few additional elements are added for convenience:


	connection.rawConnection.responseHeaders: array of headers which can be built up in the action. Headers will be made unique, and latest header will be used (except setting cookies)


	connection.rawConnection.method: A string, GET, POST, etc


	connection.rawConnection.cookies: Hash representation of the connection's cookies


	connection.rawConnection.responseHttpCode: the status code to be rendered to the user. Defaults to 200


	connection.type for a HTTP client is "web"


	connection.rawConnection.params.body will contain un-filtered form data


	connection.rawConnection.params.files will contain un-filtered form data


	connection.extension. If are using a route to access an action, and the request path ends in a file extension (IE: server.com/action/option.jpg), the extension will be available. Depending on the server's options, this extension may also be used to modify the response mime-type by configuring matchExtensionMimeType within each action.







Sending Files

data.connection.sendFile('/path/to/file.mp3');
data.toRender = false;
next();





ActionHero can also serve up flat files. ActionHero will not cache these files and each request to file will re-read the file from disk (like the nginx web server).

There are helpers you can use in your actions to send files:


	/public and /api are routes which expose the directories of those types. These top level path can be configured in /config/servers/web.js with api.config.servers.web.urlPathForActions and api.config.servers.web.urlPathForFiles.


	the root of the web server "/" can be toggled to serve the content between /file or /api actions per your needs api.config.servers.web.rootEndpointType. The default is api.


	ActionHero will serve up flat files (html, images, etc) as well from your ./public folder. This is accomplished via the file route as described above. http://{baseUrl}/public/{pathToFile} is equivalent to http://{baseUrl}?action=file&fileName={pathToFile} and http://{baseUrl}/file/{pathToFile}.


	Errors will result in a 404 (file not found) with a message you can customize.


	Proper mime-type headers will be set when possible via the mime package.




See the file server page for more documentation




Routes

For web clients, you can define an optional RESTful mapping to help route requests to actions. If the client doesn't specify an action via a param, and the base route isn't a named action, the action will attempt to be discerned from this config/routes.js file.

This variables in play here are:


	api.config.servers.web.urlPathForActions


	api.config.servers.web.rootEndpointType


	and of course the content of config/routes.js




Say you have an action called ‘status' (like in a freshly generated ActionHero project). Lets start with ActionHero's default config:

api.config.servers.web.urlPathForActions = ‘api';
api.config.servers.web.urlPathForFiles = ‘public';
api.config.servers.web.rootEndpointType = ‘file';





There are 3 ways a client can access actions via the web server.


	no routing at all and use GET params: server.com/api?action=status


	with ‘basic' routing, where the action's name will respond after the /api path: server.com/api/status


	or you can modify this with routes. Say you want server.com/api/stuff/statusPage




exports.default = function(api) {
  return {
    get: [
      { path: ‘/stuff/statusPage', action: ‘status' }
    ]
  };
}





If the api.config.servers.web.rootEndpointType is "file" which means that the routes you are making are active only under the /api path. If you wanted the route example to become server.com/stuff/statusPage, you would need to change api.config.servers.web.rootEndpointType to be ‘api'. Note that making this change doesn't stop server.com/api/stuff/statusPage from working as well, as you still have api.config.servers.web.urlPathForActions set to be ‘api', so both will continue to work.

For a route to match, all params must be satisfied. So, if you expect a route to provide api/:a/:b/:c and the request is only for api/:a/:c, the route won't match. This holds for any variable, including :apiVersion. If you want to match both with and without apiVersion, just define the rote 2x, IE:

exports.default = function(api) {
  return {
    all: [
      { path: "/cache/:key/:value",             action:  "cacheTest" },
      { path: "/:apiVersion/cache/:key/:value", action:  "cacheTest" },
    ]
  };
}





If you want to shut off access to your action at server.com/api/stuff/statusPage and only allow access via server.com/stuff/statusPage, you can disable api.config.servers.web.urlPathForActions by setting it equal to null (but keeping the api.config.servers.web.rootEndpointType equal to api).

Routes will match the newest version of apiVersion. If you want to have a specific route match a specific version of an action, you can provide the apiVersion param in your route definitions:

exports.default = function(api) {
  return {
    get: [
      { path: "/myAction/old", action:  "myAction", apiVersion: 1 },
      { path: "/myAction/new", action:  "myAction", apiVersion: 2 },
    ]
  };
}





This would create both /api/myAction/old and /api/myAction/new, mapping to apiVersion 1 and 2 respectively.

In your actions and middleware, if a route was matched, you can see the details of the match by inspecting data.connection.matchedRoute which will include path and action.

Finally, you can toggle an option, matchTrailingPathParts, which allows the final segment of your route to absorb all trailing path parts in a matched variable.

post: [
  // yes match: site.com/api/123
  // no match: site.com/api/123/admin
  { path: '/login/:userId(.*)', action: 'login' }
],

post: [
  // yes match: site.com/api/123
  // yes match: site.com/api/123/admin
  { path: '/login/:userId(.*)', action: 'login', matchTrailingPathParts: true }
],





This also enables "catch all" routes, like:

get: [
  { path: ‘:path(.*)', action: ‘catchAll', matchTrailingPathParts: true }
],





If you have a route with multiple variables defined and matchTrailingPathParts is true, only the final segment will match the trailing sections:

get: [
  // the route site.com/users/123/should/do/a/thing would become {userId: 123, path: ‘/should/do/a/thing'}
  { path: ‘/users/:userId/:path(.*)', action: ‘catchAll', matchTrailingPathParts: true }
],





Note: In regular expressions used for routing, you cannot use the "/" character.


Handling Static Folders with Routes

If you want map a special public folder to a given route you can use the "dir" parameter in your "get" routes in the routes.js file:

get: [
  { path: ‘/my/special/folder', dir: __dirname + ‘/…/public/my/special/folder', matchTrailingPathParts: true }
],





After mapping this route all files/folders within the mapped folder will be accessible on the route.

You have to map the specified public folder within the "dir" parameter, relative to the routes.js file or absolute. Make sure to set "matchTrailingPathParts" to "true", because when it is set to false, the route will never match when you request a file. (e.g.: site.com/my/special/folder/testfile.txt).




Route Notes


	actions defined in params directly action=theAction or hitting the named URL for an action /api/theAction will never override RESTful routing


	you can mix explicitly defined params with route-defined params. If there is an overlap, the route-defined params win


	IE: /api/user/123?userId=456 => connection.userId = 123






	routes defined with the "all" method will be duplicated to "get", "put", "post", and "delete"


	use ":variable" to define "variable"


	an undefined ":variable" will not match


	IE: "/api/user/" will not match "/api/user/:userId"


	You would need a second route in this case to match "/api/user"






	routes are matched as defined top-down in routes.js


	you can optionally define a regex match along with your route variable


	IE: {path:"/game/:id(^[a-z]{0,10}$)", action: "gamehandler" }}


	be sure to double-escape when needed: { path: "/login/:userID(^\d{3}$)", action: "login" }}






	The HTTP verbs which you can route against are: api.routes.verbs = ['head', 'get', 'post', 'put', 'patch', 'delete']




exports.default = function(api) {
  return {
    get: [
      { path: "/users", action: "usersList" }, // (GET) /api/users
      { path: "/search/:term/limit/:limit/offset/:offset", action: "search" }, // (GET) /api/search/car/limit/10/offset/100
    ],

    post: [
      { path: "/login/:userID(^\\d{3}$)", action: "login" } // (POST) /api/login/123
    ],

    all: [
      { path: "/user/:userID", action: "user" } // (*) / /api/user/123
    ]
  };
}










Hosts

ActionHero allows you to define a collection of host headers which this API server will allow access from. You can set these via api.config.servers.web.allowedRequestHosts. If the Host header of a client does not match one of those listed (protocol counts!), they will be redirected to the first one present.

You can also set process.env.ALLOWED_HOSTS which will be parsed as a comma-separated list of Hosts which will set api.config.servers.web.allowedRequestHosts




Parameters

Params provided by the user (GET, POST, etc for http and https servers, setParam for TCP clients, and passed to action calls from a web socket client) will be checked against a whitelist defined by your action (can be disabled in /config/servers/web.js). Variables defined in your actions by action.inputs will be added to your whitelist. Special params which the api will always accept are:

[
  ‘file',
  ‘apiVersion',
  ‘callback',
  ‘action',
]





Params are loaded in this order GET -> POST (normal) -> POST (multipart). This means that if you have {url}?key=getValue and you post a variable key=postValue as well, the postValue will be the one used. The only exception to this is if you use the URL method of defining your action. You can add arbitrary params to the whitelist by adding them to the api.postVariables array in your initializers.

File uploads from forms will also appear in connection.params, but will be an object with more information. That is, if you uploaded a file called "image", you would have connection.params.image.path, connection.params.image.name (original file name), and connection.params.image.type available to you.

A note on JSON payloads:

You can post BODY json paylaods to actionHero in the form of a hash or array.

Hash: curl -X POST -d '{"key":"something", "value":{"a":1, "b":2}}' http://localhost:8080/api/cacheTest. This will result in:

connection.params = {
  key: ‘something',
  value: {
    a: 1,
    b: 2
  }
}





Array: curl -X POST -d '[{"key":"something", "value":{"a":1, "b":2}}]' http://localhost:8080/api/cacheTest. In this case, we set the array to the param key payload:

connection.params = {
  payload: [
    {
      key: ‘something'
      value: {
        a: 1,
        b: 2
      }
    }
  ]
}






Uploading Files

ActionHero uses the formidable [https://github.com/felixge/node-formidable] form parsing library. You can set options for it via api.config.servers.web.formOptions. You can upload multiple files to an action and they will be available within connection.params as formidable response objects containing references to the original file name, where the uploaded file was stored temporarily, etc. Here is an example:

// actions/uploader.js

exports.action = {
  name: 'uploader',
  description: 'uploader',
  inputs: {
    file1: {required: true},
    file2: {required: false},
    key1: {required: false},
    key2: {required: false},
  },
  outputExample: null,
  run: function(api, data, next){
    console.log(data.params);
    next();
  }
};





<!-- public/uploader.html -->

<html>
    <head></head>
    <body>
        <form method="post" enctype="multipart/form-data" action="http://localhost:8080/api/uploader">
            <input type="file" name="file1" />
            <input type="file" name="file2" />
            <br><br>
            <input type='text' name="key1" />
            <input type='text' name="key2" />
            <br><br>
            <input type="submit" value="send" />
        </form>
    </body>
</html>





// what the params look like to an action

{ action: 'uploader',
  file1:
   { domain: null,
     _events: null,
     _maxListeners: 10,
     size: 5477608,
     path: '/app/actionhero/tmp/86b2aa018a9785e20b3f6cea95babcca',
     name: '1-02 Concentration Enhancing Menu Initialiser.mp3',
     type: 'audio/mp3',
     hash: false,
     lastModifiedDate: Wed Feb 13 2013 20:32:49 GMT-0800 (PST),
     _writeStream:
      { ... },
     length: [Getter],
     filename: [Getter],
     mime: [Getter] },
  file2:
   { domain: null,
     _events: null,
     _maxListeners: 10,
     size: 10439802,
     path: '/app/actionhero/tmp/6052010f1d75ceaeb9197a9a759124dc',
     name: '1-10 There She Is.mp3',
     type: 'audio/mp3',
     hash: false,
     lastModifiedDate: Wed Feb 13 2013 20:32:49 GMT-0800 (PST),
     _writeStream:
      { ... },
  key1: '123',
  key2: '456',
 }










Client Library

Although the ActionheroWebsocketClient client-side library is mostly for websockets, it can now be used to make http actions when not connected (and websocket clients will fall back to http actions when disconnected)

<script src="/public/javascript/ActionheroWebsocketClient.js"></script>

<script>
  var client = new ActionheroWebsocketClient();
  client.action('cacheTest', {key: 'k', value: 'v'}, function(error, data){
     // do stuff
  });
</script>





Note that we never called client.connect. More information can be found on the websocket server docs page.





          

      

      

    

  

  
    
    Overview
    

    
 
  
  

    
      
          
            
  [image: ]


Overview

ActionHero uses Primus [https://github.com/primus/primus] for web socket connections. The Primus project allows you to choose from many websocket backends, including ws, engine.io, socket.io, and more. Within ActionHero, web sockets are bound to the web server (either http or https).

ActionHero will generate the client-side javascript needed for you (based on the ActionheroWebsocketClient library, primus, and the underlying ws transport). This file is regenerated each time you boot the application.




Connection Details

// In the Browser...
<script src="/public/javascript/ActionheroWebsocketClient.js"></script>

<script>

  client = new ActionheroWebsocketClient();

  client.on('connected',    function(){ console.log('connected!') })
  client.on('disconnected', function(){ console.log('disconnected :(') })

  client.on('error',        function(error){ console.log('error', error.stack) })
  client.on('reconnect',    function(){ console.log('reconnect') })
  client.on('reconnecting', function(){ console.log('reconnecting') })

  // this will log all messages send the client
  // client.on('message',      function(message){ console.log(message) })

  client.on('alert',        function(message){ alert(message) })
  client.on('api',          function(message){ alert(message) })

  client.on('welcome',      function(message){ appendMessage(message); })
  client.on('say',          function(message){ appendMessage(message); })

  client.connect(function(error, details){
    if(error != null){
      console.log(error);
    }else{
      client.roomAdd("defaultRoom");
      client.action('someAction', {key: 'k', value: 'v'}, function(error, data){
        // do stuff
      });
    }
  });

</script>





connection.type for a webSocket client is "websocket". This type will not change regardless of if the client has fallen back to another protocol.

Data is always returned as JSON objects to the webSocket client.

An example web socket session might be the following:

You can also inspect client.state (‘connected', ‘disconnected', etc). The websocket client will attempt to re-connect automatically.

If you want to communicate with a websocket client outside of an action, you can call connection.send(message) on the server. In the client lib, the event message will be fired. So, client.on('message, function(m){ ... }). Be sure to add some descriptive content to the message you send from the sever (like perhaps {"type": 'message type'}) so you can route message types on the client.




Client Methods

The clent API can be viewed here: WebSocket Client API




Linking WebSockets to Web Clients

ActionHero provides connection.fingerprint where available to help you link websocket connections to related web connections. While every connection will always have a unique connection.id, we attempt to build connection.fingerprint by checking the headers the websocket connection began with. If the cookie defined by api.config.servers.web.fingerprint.cookieKey is present, we will store its value on the websocket connection.

You can read more about using a value like connection.fingerprint in an authentication middleware or using it as a key for session information.




Config Options

exports['default'] = {
  servers: {
    websocket: function (api) {
      return {
        enabled: true,
        // you can pass a FQDN (string) here or 'window.location.origin'
        clientUrl: 'window.location.origin',
        // Directory to render client-side JS.
        // Path should start with "/" and will be built starting from api.config..general.paths.public
        clientJsPath: 'javascript/',
        // the name of the client-side JS file to render.  Both \`.js\` and \`.min.js\` versions will be created
        // do not include the file exension
        // set to \`undefined\` to not render the client-side JS on boot
        clientJsName: 'ActionheroWebsocketClient',
        // should the server signal clients to not reconnect when the server is shutdown/reboot
        destroyClientsOnShutdown: false,

        // websocket Server Options:
        server: {
          // authorization: null,
          // pathname:      '/primus',
          // parser:        'JSON',
          // transformer:   'websockets',
          // plugin:        {},
          // timeout:       35000,
          // origins:       '*',
          // methods:       ['GET','HEAD','PUT','POST','DELETE','OPTIONS'],
          // credentials:   true,
          // maxAge:        '30 days',
          // exposed:       false,
        },

        // websocket Client Options:
        client: {
          apiPath: '/api' // the api base endpoint on your actionhero server
          // reconnect:        {},
          // timeout:          10000,
          // ping:             25000,
          // pong:             10000,
          // strategy:         "online",
          // manual:           false,
          // websockets:       true,
          // network:          true,
          // transport:        {},
          // queueSize:        Infinity,
        }
      }
    }
  }
}





You can create your client with options. Options for both the server and client are stored in /config/servers/websocket.js. Note there are 2 sections: server and client.





          

      

      

    

  
_static/comment-bright.png





_static/ajax-loader.gif





_static/comment-close.png





_static/comment.png





_static/down-pressed.png





nav.xhtml

    
      Table of Contents


      
        		
          Welcome to Read the Docs
        


      


    
  

_ima